scholarly journals Surface Modification of Biomedical MgCa4.5 and MgCa4.5Gd0.5 Alloys by Micro-Arc Oxidation

Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1360 ◽  
Author(s):  
Piotr Sakiewicz ◽  
Krzysztof Piotrowski ◽  
Anna Bajorek ◽  
Katarzyna Młynarek ◽  
Rafał Babilas ◽  
...  

The aim of this work was to characterize the structure and corrosion properties of the MgCa4.5(Gd0.5) alloys surface treated by the micro-arc oxidation (MAO) process. The MgCa4.5 and MgCa4.5Gd0.5 alloy samples were processed by MAO in an electrolyte composed of NaOH (10 g/dm3), NaF (10 g/dm3), NaH2PO4 (5 g/dm3), Na2SiO2·5H2O (10 g/dm3) and water. Two different voltages (120 V and 140 V) were used in the MAO process. The alloys protected by an oxide layer formed in the MAO were then the subject of corrosion resistance tests in an environment simulating the human body (Ringer’s solution). After the experiments, the resulting samples were investigated using SEM, XPS and EDS techniques. The addition of Gd affected the fragmentation of the coating structure, thereby increasing the specific surface; higher voltages during the MAO process increased the number and size of surface pores. Corrosion tests showed that the MgCa4.5Gd0.5 alloys were characterized by low polarization resistances and high corrosion current densities. The studies indicated the disadvantageous influence of gadolinium on the corrosion resistance of MgCa4.5 alloys. The immersion tests confirmed lower corrosion resistance of MgCa4.5Gd0.5 alloys compared to the referenced MgCa4.5 ones. The MgCa4.5 alloy with the MAO coating established at voltage 140 V demonstrated the best anticorrosion properties.

Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 754
Author(s):  
Mariya B. Sedelnikova ◽  
Anna V. Ugodchikova ◽  
Tatiana V. Tolkacheva ◽  
Valentina V. Chebodaeva ◽  
Ivan A. Cluklhov ◽  
...  

Biodegradable materials are currently attracting the attention of scientists as materials for implants in reconstructive medicine. At the same time, ceramics based on calcium silicates are promising materials for bone recovery, because Ca2+ and Si2+ ions are necessary for the mineralization process, and they take an active part in the formation of apatite. In the presented research, the protective silicate biocoatings on a Mg0.8Ca alloy were formed by means of the micro-arc oxidation method, and the study of their morphology, structure, phase composition, corrosion, and biological properties was carried out. Elongated crystals and pores were uniformly distributed over the surface of the coatings. The coated samples exhibited remarkable anti-corrosion properties in comparison with bare magnesium alloy because their corrosion current decreased 10 times, and their corrosion resistance increased almost 100 times. The coatings did not significantly affect the viability of the cells, even without the additional dilution of the extract, and were non-toxic according to ISO 10993-5: 2009. In this case, there was a significant difference in toxicity of the pure Mg0.8Ca alloy and the coated samples. Thus, the results demonstrated that the applied coatings significantly reduced the toxicity of the alloy.


2013 ◽  
Vol 27 (19) ◽  
pp. 1341029
Author(s):  
XIAOBO HUANG ◽  
JIAOJUAN ZOU ◽  
CHAN WANG ◽  
RUIQIANG HANG ◽  
JUNWEI QIAO ◽  
...  

In this study, we compared the bio-corrosion resistance and biocompatibility of a ZrTi -based BMGMC ( Zr 58.5 Ti 14.3 Ni 4.9 Cu 6.1 Nb 5.2 Be 11.0). The Ti - 6Al - 4V alloy was used as a reference material. By utilizing the electrochemical measurements and M3T3 cell culture, the corrosion resistance and biocompatibility of this BMGMC were evaluated. The BMGMC displayed high positive corrosion potentials and low corrosion current densities, which indicated that this material exhibited a highly improved corrosion resistance than the Ti alloy. The cells could adhere on the surface of this BMGMC and exhibited improved cellular behaviors, such as cellular viability and cytoskeketal structure. In summary, the ZrTi -based BMGMC showed great potential for applications in the hard tissue implants.


Author(s):  
L. Rama Krishna ◽  
G. Sundararajan

This article presents the brief overview of fairly recent and eco-friendly micro arc oxidation (MAO) coating technology. The weight-cost-performance benefits in general raised the interest to utilize lightweight materials, especially the aluminum and its alloys. Despite numerous engineering advantages, the aluminum alloys themselves do not possess suitable tribology and corrosion resistance. Therefore, improvements in surface properties are essential to enable developing potential industrial applications. For improving wear and corrosion resistance of Al alloys, the most demanding surface properties are high hardness and chemical inertness. The technical and technological limitations associated with traditional anodizing and hard anodizing processes have been the strongest driving force behind the development of new MAO technology. While presenting the key technological elements associated with the MAO process, the basic mechanism of coating formation and its phase gradient nature is presented. Influence of various process parameters including the electrolyte composition has been discussed. The typical microstructural features and distribution of α- and γ-Al2O3 phases across the coating thickness as a key strategy to form dense coatings with required mechanical, tribological, and corrosion properties which are vital to meet potential application demands are briefly illustrated.


DYNA ◽  
2018 ◽  
Vol 85 (207) ◽  
pp. 192-197 ◽  
Author(s):  
Estrella Natali Borja-Goyeneche ◽  
Jhon Jairo Olaya-Florez

This work researches the influence of the nickel content on the structural and anticorrosive properties of ZrSiTiN films deposited by means of reactive co-sputtering on alloys of Ti6Al4V. The morphology and structure were analyzed by means of scanning electron microscopy (SEM) and X-ray diffraction (XRD), and the chemical composition was identified via X-ray scattering spectroscopy (EDS). The corrosion resistance was studied using potentiodynamic polarization (PP) tests employing a 3.5% by weight NaCl solution. In the films, an increase of Ni up to 6.97 at% was observed, while in XRD the FCC phase of (Zr, Ti) N was identified, with a mixed orientation in planes (111) and (200), which tended to diminish with the increase of Ni. Finally, with the addition of Ni, the corrosion current densities were reduced from 5.56 𝑥 10−8 to 2.64 𝑥 10−9 𝐴/𝑐m2. The improvement in the corrosion resistance is due to the effect of the Ni on the microstructure of the system (Zr, Ti) N, which can improve the quality of the passive film and prevent crystalline defects and corrosion zones.


2012 ◽  
Vol 19 (03) ◽  
pp. 1250025 ◽  
Author(s):  
JOTHI SUDAGAR ◽  
RUAN DEWEN ◽  
YAQIN LIANG ◽  
RASU ELANSEZHIAN ◽  
JIANSHE LIAN

Influence of surfactants on the corrosion properties of chromium-free electroless nickel deposit were investigated on AZ91D magnesium alloy. The corrosion tests were carried out by immersion test (1 M HCl) and electrochemical polarization test (3.5 wt% NaCl ). The surfactants in the electroless nickel bath increases the corrosion resistance properties of the deposit on the magnesium alloy. In addition, smoothness and amorphous plus nano-crystalline phase were increased and accounted for the significant corrosion resistance. As a consequence, the corrosion potential moved towards the positive direction and the corrosion current density decreased. The immersion tests also provided the same trend as that of electrochemical polarization test. On the whole, the study concluded that corrosion resistance was enhanced by including a surfactant in the electroless deposits on magnesium alloy.


2012 ◽  
Vol 560-561 ◽  
pp. 837-841
Author(s):  
Pu Hong Tang ◽  
Jie Mao ◽  
Chong You Feng

TiN/AlN nanoscale multilayer films were deposited by pulsed laser ablation on silicon, with different argon and nitrogen gas flow rates. The total thickness of the TiN/AlN multilayer film was approximately 1μm. The friction and corrosion properties were studied by tribological and corrosive tests. In tribological tests, ball-on-disc was used to determine coefficients of friction and wear rates. The coefficient of friction against a Si3N4 ball varied considerably between films, as does the wear rate. The lowest coefficient of friction μ=0.97 was shown at sample 1, whereas the other three multilayer films were ranged from 1.0 to 1.5. In corrosion test, the anodic polarization characteristics were measured in a 3.5% NaCl solution at room temperature to examine the corrosion resistance. The potentiodynamic polarization measurements showed that for all the multilayer films the corrosion potential shift to higher values, and the corrosion current density decreased with increasing of nitrogen gas flow rate, which indicate a higher nitrogen partial pressures lead to a better corrosion resistance.


2014 ◽  
Vol 1030-1032 ◽  
pp. 48-51
Author(s):  
Wei Wei Sun ◽  
Mu Qin Li ◽  
Yan Gao ◽  
Jiang Liu

A double sealing coating was prepared on ultrasonic micro-arc oxidized pure magnesium substrate by adding nano-SiO2 particles as additive in the plating solution and coating SiO2 sol as sealing agent. The bonding characters of SiO2 sol was analyzed by Fourier transformed infrared spectrometry (FTIR). The compositions and morphology of seal coating were characterized by energy-dispersive X-ray spectroscopy (EDS) and scanning electron microscopy (SEM), respectively. The corrosion resistance of the micro-arc oxidized and the sealed pure magnesium substrate were studied. The results showed that the Si content increased gradually with the addition of nano-SiO2 particles and the SiO2 sol sealing. It was benefit to create bioactive MgSiO3, which promoted the bone growth. The double sealed pure magnesium had a self-corrosion potential shifted positively by 60mV as well as a self-corrosion current density decreased by a half in a 3.5wt% NaCl solution, showing good corrosion resistance.


2015 ◽  
Vol 727-728 ◽  
pp. 201-204
Author(s):  
Yun Long Zhang ◽  
Mu Qin Li ◽  
Ping Liao ◽  
Yu Min Zhang

In this paper,the micro-arc oxidation technology were utilized to fabricated the oxidation coating in order to resolve the corrosion resistance of the Mg-Al-Y alloy. The EDTA-2Na solution was introduced into the electrolyte solution for improving the coating corrosion properties.After the micro-arc oxidation process, phase structural, surface morphology and corrosion resistance of the MAO coating of Mg-Al-Y alloy were performed by XRD, SEM and Potentiodynamic polarisation measurements. The introduce of EDTA-2Na in the electrolyte solution improve the positive potential and reduced the corrosion current, which would improve the corrosion resistance properties of the Mg-Al-Y alloy.


2013 ◽  
Vol 803 ◽  
pp. 191-195
Author(s):  
Yun Long Zhang ◽  
Mu Qin Li ◽  
Yu Min Zhang ◽  
Ming Hu

The ceramics coating hadobtained by the micro arc oxidation technology in order to resolve thecorrosion resistance of the Mg alloy.The phase composition, surface morphology,gained weight and polarization behavior of the micro arc oxidation coating wasinvestigated in details. After the introduce of the sodiumcitrate in the electrolyte solution, thespecimen had high relatively positive potential and low corrosion current, sodoped sodium citratewould improve the corrosion resistance properties of the Mg alloy .


2011 ◽  
Vol 299-300 ◽  
pp. 427-431
Author(s):  
Yun Li ◽  
Shi Zhi Shang ◽  
Ming Cheng ◽  
Liang Xu ◽  
Shi Hong Zhang

The corrosion behavior of Zr53.5Cu26.5Ni5Al12Ag3 bulk amorphous alloy in 3.5% NaCl solution was investigated by using potentiodynamic polarization experiments and electrochemical impedance spectroscopy (EIS). The results show that Zr53.5Cu26.5Ni5Al12Ag3 bulk amorphous alloy has the better corrosion resistance than its corresponding crystal alloy. During the bath in the 3.5% NaCl solution at 25°C, Zr53.5Cu26.5Ni5Al12Ag3 alloy has the lower corrosion current density than the corresponding crystal alloy. After 100h, the corrosion current densities of Zr53.5Cu26.5Ni5Al12Ag3 and the corresponding crystal alloy are 3.8415×10-8A/cm2 and 5.2827×10-7A/cm2, respectively. The results of EIS test indicate that Zr53.5Cu26.5Ni5Al12Ag3 bulk amorphous alloy has the excellent corrosion resistance because passive film with stable structure formed on the surface in 3.5% NaCl solution. With an increase in the immersion time, the passive film becomes thicker. It leads to impedance resistance and corrosion resistance decrease. The surface of Zr53.5Cu26.5Ni5Al12Ag3 bulk amorphous alloy in 3.5% NaCl solution for 100h was analyzed by SEM and EDS. The results show that the corrosive pitting can be found at both the amorphous alloy and the corresponding crystal alloy. However, the amorphous alloy has the better corrosive pitting resistance than the crystal one because the corrosion products formed by selective dissolving of Zr and Al elements. Moreover, the addition of Ag element helps to improve the corrosion resistance of the amorphous alloy greatly.


Sign in / Sign up

Export Citation Format

Share Document