scholarly journals Main 3D Manufacturing Techniques for Customized Bone Substitutes. A Systematic Review

Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2524
Author(s):  
Javier Montero ◽  
Alicia Becerro ◽  
Beatriz Pardal-Peláez ◽  
Norberto Quispe-López ◽  
Juan-Francisco Blanco ◽  
...  

Clinicians should be aware of the main methods and materials to face the challenge of bone shortage by manufacturing customized grafts, in order to repair defects. This study aims to carry out a bibliographic review of the existing methods to manufacture customized bone scaffolds through 3D technology and to identify their current situation based on the published papers. A literature search was carried out using “3D scaffold”, “bone regeneration”, “robocasting” and “3D printing” as descriptors. This search strategy was performed on PubMed (MEDLINE), Scopus and Cochrane Library, but also by hand search in relevant journals and throughout the selected papers. All the papers focusing on techniques for manufacturing customized bone scaffolds were reviewed. The 62 articles identified described 14 techniques (4 subtraction + 10 addition techniques). Scaffold fabrication techniques can be also be classified according to the time at which they are developed, into Conventional techniques and Solid Freeform Fabrication techniques. The conventional techniques are unable to control the architecture of the pore and the pore interconnection. However, current Solid Freeform Fabrication techniques allow individualizing and generating complex geometries of porosity. To conclude, currently SLA (Stereolithography), Robocasting and FDM (Fused deposition modeling) are promising options in customized bone regeneration.

Author(s):  
Vikram R. Jamalabad ◽  
Mukesh K. Agarwala ◽  
Noshir A. Langrana ◽  
Stephen C. Danforth

Abstract Fused Deposition of Ceramics (FDC) is a Solid Freeform Fabrication (SFF) technique under development at Rutgers University. This technique is based on Fused Deposition Modeling (FDM)2, a commercially available SFF technology. Freeform fabrication of ceramic and metal parts is a means of significantly lowering the cost of currently expensive components. The feasibility of Fused Deposition of Ceramics (FDC) has been demonstrated in the recent past. Crucial to the viable fabrication of ceramic components is the elimination of defects in the parts. Apart from some of the usual traits of SFF techniques, some distinct features of FD Processing lead to defects in fabricated parts. The focus of this work is to study and improve the build procedure of FDM, thereby reducing the defects that are associated with FD processing. Predictable errors in the FDC/FDM components need to be consistently eliminated to increase the yield of fully dense, defect free, green parts. Changes in the manufacturing procedure and operation of FDC are shown to reduce these errors. Fully dense green components are further processed to obtain defect free fully dense sintered ceramic parts.


Author(s):  
Charalabos Doumanidis ◽  
Yong-Min Kwak

Abstract In thermal solid freeform fabrication of layered products, simultaneous quality assurance of the part geometry and material structure requires concurrent design of the process conditions with the product features. For a heat transfer analysis yielding the material structure, an analytical, distributed-parameter quasi-linear thermal model is developed and tested in scan welding. This is based on Green’s field, identified in-process by infrared temperature sensing to reflect thermal nonlinearities. Similarly, a mass transfer model of the layer surface geometry is established on an analogous concept of the material deposition field, approximated by an ellipsoidal shape and identified in-process by Laser 3D scanning of the part topology in fused deposition modeling tests. The invertibility and computational efficiency of both models provide a basis for design of adaptive feedback control strategies for the thermogeometrical characteristics of rapid prototypes.


1999 ◽  
Author(s):  
Merve Erdal ◽  
Levent Ertoz ◽  
Selçuk Güçeri

Abstract Fused deposition based solid freeform fabrication technique allows manufacturing of potential functional preforms for subsequent Resin Transfer Molding. In this study, the transport property (permeability) of solid freeform fabricated porous preform geometries are investigated. Specifically the effect of pore geometry and network on the permeability is sought. Wet (saturated) permeability experiments were performed for various pore geometries with different viscosity liquids. For all fluids and preform structures investigated in this study, the porous flow exhibited Darcian behavior. The permeability is affected by changes in order of magnitude of fluid viscosity, the effect considerably significant in low porosity preforms. Current work concentrates on dry permeability measurement and development of numerical permeability models for ordered pore geometries (as produced through SFF) that will be compared with experimental results.


1998 ◽  
Vol 542 ◽  
Author(s):  
C. J. Gasdaska ◽  
R. Clancy ◽  
V. Jamalabad ◽  
D. Dalfonzo

AbstractSilicon nitride ceramics have been prepared using the fused deposition (FD) process in a Stratasys 1650 modeler. Two types of silicon nitride have been prepared: GS44 and AS800. AS800 is processed and used at higher temperatures than GS44. The strength of machined surfaces of either type of silicon nitride prepared using FD is comparable to conventionally processed material. Using standard build conditions strengths for as-built and as-sintered surfaces are approximately 50% lower. The additive nature of solid freeform processes also allows multi-material combinations to be deposited which result in enhanced performance. For example, combinations of silicon nitride based materials with different thermal expansion coefficients have been prepared which demonstrate strength increases > 20%. In addition, components containing complicated internal cavities may also be fabricated.


Author(s):  
José F. Rodríguez ◽  
James P. Thomas ◽  
John E. Renaud

Abstract The high degree of automation of Solid Freeform Fabrication (SFF) processing and its ability to create geometrically complex parts to precise dimensions provide it with a unique potential for low volume production of rapid tooling and functional components. A factor of significant importance in the above applications is the capability of producing components with adequate mechanical performance (e.g., stiffness and strength). This paper introduces a strategy for the optimizing the design of Fused-Deposition Acrylonitrile-Butadiene-Styrene (FD-ABS) components for stiffness and strength. In this strategy, a mathematical model of the structural system is linked to an approximate minimization algorithm to find the settings of select manufacturing parameters which optimize the mechanical performance of the component. The methodology is demonstrated by maximizing the load carrying capacity of a two-section cantilevered FD-ABS beam.


Author(s):  
Jin-Hyung Shim ◽  
Jong Young Kim ◽  
Kyung Shin Kang ◽  
Jung Kyu Park ◽  
Sei Kwang Hahn ◽  
...  

Tissue engineering is an interdisciplinary field that focuses on restoring and repairing tissues or organs. Cells, scaffolds, and biomolecules are recognized as three main components of tissue engineering. Solid freeform fabrication (SFF) technology is required to fabricate three-dimensional (3D) porous scaffolds to provide a 3D environment for cellular activity. SFF technology is especially advantageous for achieving a fully interconnected, porous scaffold. Bone morphogenic protein-2 (BMP-2), an important biomolecule, is widely used in bone tissue engineering to enhance bone regeneration activity. However, methods for the direct incorporation of intact BMP-2 within 3D scaffolds are rare. In this work, 3D porous scaffolds with poly(lactic-co-glycolic acid) chemically grafted hyaluronic acid (HA-PLGA), in which intact BMP-2 was directly encapsulated, were successfully fabricated using SFF technology. BMP-2 was previously protected by poly(ethylene glycol) (PEG), and the BMP-2/PEG complex was incorporated in HA-PLGA using an organic solvent. The HAPLGA/PEG/BMP-2 mixture was dissolved in chloroform and deposited via a multi-head deposition system (MHDS), one type of SFF technology, to fabricate a scaffold for tissue engineering. An additional air blower system and suction were installed in the MHDS for the solvent-based fabrication method. An in vitro evaluation of BMP-2 release was conducted, and prolonged release of intact BMP-2, for up to 28 days, was confirmed. After confirmation of advanced proliferation of pre osteoblasts, a superior differentiation effect of the HA-PLGA/PEG/BMP-2 scaffold was validated by measuring high expression levels of bone-specific markers, such as alkaline phosphatase (ALP) and osteocalcin (OC). We show that our solvent-based fabrication is a non-toxic method for restoring cellular activity. Moreover, the HAPLGA/PEG/BMP-2 scaffold was effective for bone regeneration.


2021 ◽  
Vol 22 (13) ◽  
pp. 6997
Author(s):  
Gyeong-Ji Kim ◽  
Kwon-Jai Lee ◽  
Jeong-Woo Choi ◽  
Jeung Hee An

We developed a multi-channel cell chip containing a three-dimensional (3D) scaffold for horizontal co-culture and drug toxicity screening in multi-organ culture (human glioblastoma, cervical cancer, normal liver cells, and normal lung cells). The polydimethylsiloxane (PDMS) multi-channel cell chip (PMCCC) was based on fused deposition modeling (FDM) technology. The architecture of the PMCCC was an open-type cell chip and did not require a pump or syringe. We investigated cell proliferation and cytotoxicity by conducting 3-(4,5-dimethylthiazol-2-yl)-2,5-dphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays and analysis of oleanolic acid (OA)-treated multi-channel cell chips. The results of the MTT and LDH assays showed that OA treatment in the multi-channel cell chip of four cell lines enhanced chemoresistance of cells compared with that in the 2D culture. Furthermore, we demonstrated the feasibility of the application of our multi-channel cell chip in various analysis methods through Annexin V-fluorescein isothiocyanate/propidium iodide staining, which is not used for conventional cell chips. Taken together, the results demonstrated that the PMCCC may be used as a new 3D platform because it enables simultaneous drug screening in multiple cells by single point injection and allows analysis of various biological processes.


1998 ◽  
Vol 542 ◽  
Author(s):  
A. Safari ◽  
S. C. Danforth ◽  
A. L. Kholkin ◽  
I. A. Cornejo ◽  
F. Mohammadi ◽  
...  

AbstractNovel piezoelectric ceramic and ceramic/polymer composite structures were fabricated by solid freeform fabrication (SFF) for sensor and actuator applications. SFF techniques including fused deposition of ceramics (FDC) and Sanders prototyping (SP) were utilized to fabricate a variety of complex structures directly from a computer aided design (CAD) file. Novel composite structures including volume fraction gradients (VFG) and staggered rods, as well as actuator designs such as tubes, spirals and telescopes were made using the flexibility provided by the above processes. VFG composites were made by SP technique with the ceramic content decreasing from the center towards the edges. This resulted in a reduction of side lobe intensity in the acoustic beam pattern. The FDC technique was used to manufacture high authority actuators utilizing novel designs for the amplification of strain under applied electric field. The design, fabrication and electromechanical properties of these composite and actuator structures are discussed in this paper.


Author(s):  
Abigail Chaffins ◽  
Mohan Yu ◽  
Pier Paolo Claudio ◽  
James B. Day ◽  
Roozbeh (Ross) Salary

Abstract Fused deposition modeling (FDM), is a direct-write material extrusion additive manufacturing process, which has emerged as a method of choice for the fabrication of a wide range of biological tissues and structures. FDM allows for non-contact, multi-material deposition of a broad spectrum of functional materials for tissue engineering applications. However, the FDM process is intrinsically complex, consisting of a multitude of parameters as well as material-machine interactions, which may adversely influence the mechanical properties, the surface morphology, and ultimately the functional integrity of fabricated bone scaffolds. Hence, process optimization in addition to physics-based characterization of the FDM process would be inevitably a need. The overarching goal of this research work is to fabricate biocompatible, porous bone scaffolds, incorporating autologous human bone marrow mesenchymal stem cells (hBMSCs), for the treatment of osseous fractures, defects, and eventually diseases. The objective of this work is to investigate the mechanical properties of several triply periodic minimal surface (TPMS) bone scaffolds, fabricated using fused deposition modeling (FDM) additive manufacturing process. In this study, biocompatible TPMS bone scaffolds were FDM-deposited, based on a medical-grade polymer composite, composed of polyamide, polyolefin, and cellulose fibers (named PAPC-II). In addition, the experimental characterization of the TPMS bone scaffolds was on the basis of a single factor experiment. The compression properties of the fabricated bone scaffolds were measured using a compression testing machine. Furthermore, a digital image processing program was developed in the MATLAB environment to characterize the morphological properties of the fabricated bone scaffolds.


2003 ◽  
Vol 125 (3) ◽  
pp. 545-551 ◽  
Author(s):  
Jose´ F. Rodrı´guez ◽  
James P. Thomas ◽  
John E. Renaud

The high degree of automation of Solid Freeform Fabrication (SFF) processing and its ability to create geometrically complex parts to precise dimensions provide it with a unique potential for low volume production of rapid tooling and functional components. A factor of significant importance in the above applications is the capability of producing components with adequate mechanical performance (e.g., stiffness and strength). This paper introduces a strategy for optimizing the design of Fused-Deposition Acrylonitrile-Butadiene-Styrene (FD-ABS; P400) components for stiffness and strength under a given set of loading conditions. In this strategy, a mathematical model of the structural system is linked to an approximate minimization algorithm to find the settings of select manufacturing parameters, which optimize the mechanical performance of the component. The methodology is demonstrated by maximizing the load carrying capacity of a two-section cantilevered FD-ABS beam.


Sign in / Sign up

Export Citation Format

Share Document