Process Improvements in Fused Deposition of Ceramics (FDC): Progress Towards Structurally Sound Components

Author(s):  
Vikram R. Jamalabad ◽  
Mukesh K. Agarwala ◽  
Noshir A. Langrana ◽  
Stephen C. Danforth

Abstract Fused Deposition of Ceramics (FDC) is a Solid Freeform Fabrication (SFF) technique under development at Rutgers University. This technique is based on Fused Deposition Modeling (FDM)2, a commercially available SFF technology. Freeform fabrication of ceramic and metal parts is a means of significantly lowering the cost of currently expensive components. The feasibility of Fused Deposition of Ceramics (FDC) has been demonstrated in the recent past. Crucial to the viable fabrication of ceramic components is the elimination of defects in the parts. Apart from some of the usual traits of SFF techniques, some distinct features of FD Processing lead to defects in fabricated parts. The focus of this work is to study and improve the build procedure of FDM, thereby reducing the defects that are associated with FD processing. Predictable errors in the FDC/FDM components need to be consistently eliminated to increase the yield of fully dense, defect free, green parts. Changes in the manufacturing procedure and operation of FDC are shown to reduce these errors. Fully dense green components are further processed to obtain defect free fully dense sintered ceramic parts.

1998 ◽  
Vol 542 ◽  
Author(s):  
A. Safari ◽  
S. C. Danforth ◽  
A. L. Kholkin ◽  
I. A. Cornejo ◽  
F. Mohammadi ◽  
...  

AbstractNovel piezoelectric ceramic and ceramic/polymer composite structures were fabricated by solid freeform fabrication (SFF) for sensor and actuator applications. SFF techniques including fused deposition of ceramics (FDC) and Sanders prototyping (SP) were utilized to fabricate a variety of complex structures directly from a computer aided design (CAD) file. Novel composite structures including volume fraction gradients (VFG) and staggered rods, as well as actuator designs such as tubes, spirals and telescopes were made using the flexibility provided by the above processes. VFG composites were made by SP technique with the ceramic content decreasing from the center towards the edges. This resulted in a reduction of side lobe intensity in the acoustic beam pattern. The FDC technique was used to manufacture high authority actuators utilizing novel designs for the amplification of strain under applied electric field. The design, fabrication and electromechanical properties of these composite and actuator structures are discussed in this paper.


Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2524
Author(s):  
Javier Montero ◽  
Alicia Becerro ◽  
Beatriz Pardal-Peláez ◽  
Norberto Quispe-López ◽  
Juan-Francisco Blanco ◽  
...  

Clinicians should be aware of the main methods and materials to face the challenge of bone shortage by manufacturing customized grafts, in order to repair defects. This study aims to carry out a bibliographic review of the existing methods to manufacture customized bone scaffolds through 3D technology and to identify their current situation based on the published papers. A literature search was carried out using “3D scaffold”, “bone regeneration”, “robocasting” and “3D printing” as descriptors. This search strategy was performed on PubMed (MEDLINE), Scopus and Cochrane Library, but also by hand search in relevant journals and throughout the selected papers. All the papers focusing on techniques for manufacturing customized bone scaffolds were reviewed. The 62 articles identified described 14 techniques (4 subtraction + 10 addition techniques). Scaffold fabrication techniques can be also be classified according to the time at which they are developed, into Conventional techniques and Solid Freeform Fabrication techniques. The conventional techniques are unable to control the architecture of the pore and the pore interconnection. However, current Solid Freeform Fabrication techniques allow individualizing and generating complex geometries of porosity. To conclude, currently SLA (Stereolithography), Robocasting and FDM (Fused deposition modeling) are promising options in customized bone regeneration.


Author(s):  
Charalabos Doumanidis ◽  
Yong-Min Kwak

Abstract In thermal solid freeform fabrication of layered products, simultaneous quality assurance of the part geometry and material structure requires concurrent design of the process conditions with the product features. For a heat transfer analysis yielding the material structure, an analytical, distributed-parameter quasi-linear thermal model is developed and tested in scan welding. This is based on Green’s field, identified in-process by infrared temperature sensing to reflect thermal nonlinearities. Similarly, a mass transfer model of the layer surface geometry is established on an analogous concept of the material deposition field, approximated by an ellipsoidal shape and identified in-process by Laser 3D scanning of the part topology in fused deposition modeling tests. The invertibility and computational efficiency of both models provide a basis for design of adaptive feedback control strategies for the thermogeometrical characteristics of rapid prototypes.


1999 ◽  
Author(s):  
Merve Erdal ◽  
Levent Ertoz ◽  
Selçuk Güçeri

Abstract Fused deposition based solid freeform fabrication technique allows manufacturing of potential functional preforms for subsequent Resin Transfer Molding. In this study, the transport property (permeability) of solid freeform fabricated porous preform geometries are investigated. Specifically the effect of pore geometry and network on the permeability is sought. Wet (saturated) permeability experiments were performed for various pore geometries with different viscosity liquids. For all fluids and preform structures investigated in this study, the porous flow exhibited Darcian behavior. The permeability is affected by changes in order of magnitude of fluid viscosity, the effect considerably significant in low porosity preforms. Current work concentrates on dry permeability measurement and development of numerical permeability models for ordered pore geometries (as produced through SFF) that will be compared with experimental results.


1998 ◽  
Vol 542 ◽  
Author(s):  
C. J. Gasdaska ◽  
R. Clancy ◽  
V. Jamalabad ◽  
D. Dalfonzo

AbstractSilicon nitride ceramics have been prepared using the fused deposition (FD) process in a Stratasys 1650 modeler. Two types of silicon nitride have been prepared: GS44 and AS800. AS800 is processed and used at higher temperatures than GS44. The strength of machined surfaces of either type of silicon nitride prepared using FD is comparable to conventionally processed material. Using standard build conditions strengths for as-built and as-sintered surfaces are approximately 50% lower. The additive nature of solid freeform processes also allows multi-material combinations to be deposited which result in enhanced performance. For example, combinations of silicon nitride based materials with different thermal expansion coefficients have been prepared which demonstrate strength increases > 20%. In addition, components containing complicated internal cavities may also be fabricated.


Author(s):  
José F. Rodríguez ◽  
James P. Thomas ◽  
John E. Renaud

Abstract The high degree of automation of Solid Freeform Fabrication (SFF) processing and its ability to create geometrically complex parts to precise dimensions provide it with a unique potential for low volume production of rapid tooling and functional components. A factor of significant importance in the above applications is the capability of producing components with adequate mechanical performance (e.g., stiffness and strength). This paper introduces a strategy for the optimizing the design of Fused-Deposition Acrylonitrile-Butadiene-Styrene (FD-ABS) components for stiffness and strength. In this strategy, a mathematical model of the structural system is linked to an approximate minimization algorithm to find the settings of select manufacturing parameters which optimize the mechanical performance of the component. The methodology is demonstrated by maximizing the load carrying capacity of a two-section cantilevered FD-ABS beam.


2014 ◽  
Vol 1030-1032 ◽  
pp. 2326-2329
Author(s):  
Shi Jian Yang ◽  
Zhen Jie Du ◽  
Hai Hong Kang

The prototype of a production can be manufactured directly from its 3D CAD model data by using rapid prototyping technology, and can be renewed conveniently after modifying the CAD model. In this paper, the basic principle, typical prototyping systems are introduced, and rapid prototyping methods such as selected laser sintering of powder material, fused deposition modeling of threadlike material and laminated object manufacturing are presented. An application of rapid prototyping technology on design and development of first aid kit is described in detail. It is indicated that rapid prototyping technology is an effective means to lower the cost and shorten the period of development of medical equipment.


Author(s):  
James D. Cawley

Advanced ceramics such as alumina, silicon carbide and silicon nitride (monolithics and composites) have properties that suggest application in gas turbine engines. However, the production of components from these materials is very different from that typical of superalloys and this has limited the range of applications for ceramics in gas turbines. The manufacturing freedom offered by the recently developed technologies termed “rapid prototyping,” RP, or equivalently, “solid freeform fabrication,” SFF, may enable a much wider range of applications to be served in the future. RP was developed to allow production of form-and-fit models without the need for tooling and has proven to be a key assel in the design of new components as well as for the implementation of design changes to existing ones. Direct SFF using engineering materials to prototype components is undergoing continued development and is expected to provide an enabling technology that promises to change design philosophies for components made from ceramics (and other powder-based materials). In this paper, the opportunities for SFF in gas turbine applications are discussed, a brief state-of-the-art overview of RP and its application to engineering ceramics is provided, and a particular process, CAM-LEM, is highlighted.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Mayank Prajapati ◽  
Sandeep Rimza

Fused deposition modeling (FDM) is one of the most adaptable additive manufacturing method owing to the cost-effectiveness and environment-friendly nature. However, FDM technique still possesses major difficulties in terms of poor surface quality because of adding layer by layer manufacturing process for the prototypes. It is desirable to explore an efficient technique for FDM parts to enhance the poor surface quality and dimensions precision. In the present paper, an effort has been made to enhance the surface quality and optimize the critical processing parameter of FDM based benchmark using vapor smoothing process (VSP). A comparative experimental study has been performed by design of experiments (DOE), Taguchi technique to find the influence of input design parameters on the surface finish of benchmark FDM parts. The results of the present investigation show that VSP treatment improves the surface quality of FDM parts to micro level with negligible dimensional variation. It is observed that improved surface quality is found in the 1,2, -Dichloroethane chemical at 90° part build orientation, 0.25 mm layer thickness, 10% fill density and 90 second exposure times.


2003 ◽  
Vol 125 (3) ◽  
pp. 545-551 ◽  
Author(s):  
Jose´ F. Rodrı´guez ◽  
James P. Thomas ◽  
John E. Renaud

The high degree of automation of Solid Freeform Fabrication (SFF) processing and its ability to create geometrically complex parts to precise dimensions provide it with a unique potential for low volume production of rapid tooling and functional components. A factor of significant importance in the above applications is the capability of producing components with adequate mechanical performance (e.g., stiffness and strength). This paper introduces a strategy for optimizing the design of Fused-Deposition Acrylonitrile-Butadiene-Styrene (FD-ABS; P400) components for stiffness and strength under a given set of loading conditions. In this strategy, a mathematical model of the structural system is linked to an approximate minimization algorithm to find the settings of select manufacturing parameters, which optimize the mechanical performance of the component. The methodology is demonstrated by maximizing the load carrying capacity of a two-section cantilevered FD-ABS beam.


Sign in / Sign up

Export Citation Format

Share Document