scholarly journals Effect of Surface Roughness Characteristics on Structural Performance of Hollow Core Slabs

Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2610
Author(s):  
Yong-Jun Lee ◽  
Hyeong-Gook Kim ◽  
Chan-Yu Jeong ◽  
Dong-Hwan Kim ◽  
Sang-Pil Han ◽  
...  

This study was conducted to evaluate the flexural performance of hollow core slabs (HCS) incorporating the effect of surface roughness. The HCSs are suitable for long span structures due to reduced self-weight. The specimens were HCS with topping concrete and the variables were cross sectional height and surface roughness. The tests were conducted on simply supported beams under four-point loads. The results showed that specimens with interface roughness applied in the lengthwise direction of members exhibited ductile flexural behavior up to peak load than those with interface roughness applied in the member width direction. Their flexural strength was also higher by 1–7% on average, indicating that they are advantageous in improving structural performance.

1990 ◽  
Vol 5 (1) ◽  
pp. 123-126 ◽  
Author(s):  
D. L. Joslin ◽  
W. C. Oliver

A new parameter, hardness/modulus2 (H/E2), has been derived from the equations used to calculate the hardness and elastic modulus from data taken during continuous depth-sensing microindentation tests. This paper discusses the use of this parameter to treat the data obtained from a sample whose surface roughness was of the same scale as the size of the indents. The resulting data were widely scattered. This scatter was reduced when the data were plotted in terms of H/E2 versus stiffness. The effect of surface roughness on the hardness and elastic modulus results is removed via stiffness measurements, provided single contacts are made between the indenter and the specimen. The function relating the cross-sectional area of the indenter versus the distance from its point is not required for calculation of H/E2, but the hardness and modulus cannot be determined separately. The parameter H/E2 indicates resistance to plastic penetration in this case.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Ahmmad Abbass ◽  
Sallal Abid ◽  
Mustafa Özakça

In this study, an experimental work was directed toward comparing the flexural behavior of solid and hollow steel fiber-reinforced concrete beams. For this purpose, eight square cross-sectional beam specimens, four solid and four hollow, were prepared. One concrete mixture with four different steel fiber contents of 0, 0.5, 1.0, and 1.5% were used. The side length of the central square hole was 80 mm, whereas the cross-sectional side length was 150 mm. All beams were tested under four-point monotonic loading until failure. In addition to the solid and hollow beams, cylinders were cast to evaluate the compressive strength, splitting tensile strength, and modulus of elasticity, whereas prisms were used to conduct the fracture test. The test results showed that all fibrous beams failed in flexure, whereas those without fiber exhibited flexural-shear failure. In general, the flexural behavior of fibrous-beams was superior to that of beams without fiber. The hollow beams with fiber contents of 0, 0.5, and 1.0% were observed to withstand lower loads at cracking, yielding, and peak stages compared with their corresponding solid beams; this was not the case for the 1.5% fiber hollow beam, which exhibited a higher peak load than its corresponding solid beam. Although all eight beams exhibited ductility indices higher than 3.7, hollow beams exhibited better ductility than solid beams, showing higher ductility index values.


2002 ◽  
Vol 715 ◽  
Author(s):  
J. Krc ◽  
M. Zeman ◽  
O. Kluth ◽  
F. Smole ◽  
M. Topic

AbstractThe descriptive scattering parameters, haze and angular distribution functions of textured ZnO:Al transparent conductive oxides with different surface roughness are measured. An approach to determine the scattering parameters of all internal interfaces in p-i-n a-Si:H solar cells deposited on the glass/ZnO:Al substrates is presented. Using the determined scattering parameters as the input parameters of the optical model, a good agreement between the measured and simulated quantum efficiencies of the p-i-n a-Si:H solar cells with different interface roughness is achieved.


Shinku ◽  
1987 ◽  
Vol 30 (10) ◽  
pp. 793-798 ◽  
Author(s):  
Masao HIRASAKA ◽  
Masao HASHIBA ◽  
Toshiroh YAMASHINA

Author(s):  
Yongkai Zhou ◽  
Jie Zhu ◽  
Han Wei Teo ◽  
ACT Quah ◽  
Lei Zhu ◽  
...  

Abstract In this paper, two failure analysis case studies are presented to demonstrate the importance of sample preparation procedures to successful failure analyses. Case study 1 establishes that Palladium (Pd) cannot be used as pre-FIB coating for SiO2 thickness measurement due to the spontaneously Pd silicide formation at the SiO2/Si interface. Platinum (Pt) is thus recommended, in spite of the Pt/SiO2 interface roughness, as the pre-FIB coating in this application. In the second case study, the dual-directional TEM inspection method is applied to characterize the profile of the “invisible” tungsten residue defect. The tungsten residue appears invisible in the planeview specimen due to the low mass-thickness contrast. It is then revealed in the cross-sectional TEM inspection.


Author(s):  
Santosh Kumar ◽  
Vimal Edachery ◽  
Swamybabu Velpula ◽  
Avinash Govindaraju ◽  
Sounak K. Choudhury ◽  
...  

Clinching is an economical sheet joining technique that does not require any consumables. Besides, after its usage, the joints can be recycled without much difficulty, making clinching one of the most sustainable and eco-friendly manufacturing processes and a topic of high research potential. In this work, the influence of surface roughness on the load-bearing capacity (strength) of joints made by the mechanical clinching method in cross-tensile and lap-shear configuration is explored. Additionally, a correlating mathematical model is established between the joint strength and its surface parameters, namely, friction coefficient and wrap angle, based on the belt friction phenomenon. This correlation also explains the generally observed higher strength in lap-shear configuration compared to cross-tensile in clinching joints. From the mathematical correlation, through friction by increasing the average surface roughness, it is possible to increase the strength of the joint. The quality of the thus produced joint is analyzed by cross-sectional examination and comparison with simulation results. Experimentally, it is shown that an increment of >50% in the joint strength is achieved in lap-shear configuration by modifying the surface roughness and increasing the friction coefficient at the joint interface. Further, the same surface modification does not significantly affect the strength in cross-tensile configuration.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 320
Author(s):  
Jairan Nafar Dastgerdi ◽  
Fariborz Sheibanian ◽  
Heikki Remes ◽  
Hossein Hosseini Toudeshky

This paper provides further understanding of the peak load effect on micro-crack formation and residual stress relaxation. Comprehensive numerical simulations using the finite element method are applied to simultaneously take into account the effect of the surface roughness and residual stresses on the crack formation in sandblasted S690 high-strength steel surface under peak load conditions. A ductile fracture criterion is introduced for the prediction of damage initiation and evolution. This study specifically investigates the influences of compressive peak load, effective parameters on fracture locus, surface roughness, and residual stress on damage mechanism and formed crack size. The results indicate that under peak load conditions, surface roughness has a far more important influence on micro-crack formation than residual stress. Moreover, it is shown that the effect of peak load range on damage formation and crack size is significantly higher than the influence of residual stress. It is found that the crack size develops exponentially with increasing peak load magnitudes.


Sign in / Sign up

Export Citation Format

Share Document