scholarly journals Mechanical Properties of a Chiral Cellular Structure with Semicircular Beams

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2887
Author(s):  
Yalei Bai ◽  
Tong Zhao ◽  
Chengxu Yuan ◽  
Weidong Liu ◽  
Haichao Zhang ◽  
...  

Compliant cellular structures are good candidates for morphing applications. This paper proposes a novel chiral cellular structure composed of circular beams with great elastic properties and potential for morphing. The tensile and shear elastic properties of the structure are studied through theoretical derivations and then verified by finite element analysis. Results show that this novel chiral structure exhibits extremely low in-plane tensile and shear moduli, which are many orders of magnitude lower than that of the raw material. The structure also shows tensile–shear and shear–tensile coupling effects that cannot be ignored. The tensile and shear properties of the structure can provide a reference for employing this structure in engineering applications.

2021 ◽  
Author(s):  
Wenhuan Zhang ◽  
Zhaoping Deng ◽  
Hongwei Yuan ◽  
Shikai Luo ◽  
Huayin Wen ◽  
...  

AbstractIn this paper, silicone rubber materials with foam/solid alternating multilayered structures were successfully constructed by combining the two methods of multilayered hot-pressing and supercritical carbon dioxide (SCCO2) foaming. The cellular morphology and mechanical properties of the foam/solid alternating multilayered silicone rubber materials were systematically studied. The results show that the growth of the cell was restrained by the solid layer, resulting in a decrease in the cell size. In addition, the introduction of the solid layer effectively improved the mechanical properties of the microcellular silicone rubber foam. The tensile strength and compressive strength of the foam/solid alternating multilayered silicone rubber materials reached 5.39 and 1.08 MPa, which are 46.1% and 237.5% of the pure silicone rubber foam, respectively. Finite element analysis (FEA) was applied and the results indicate that the strength and proportion of the solid layer played important roles in the tensile strength of the foam/solid alternating multilayered silicone rubber materials. Moreover, the small cellular structures in silicone rubber foam can provided a high supporting counterforce during compression, meaning that the microcellular structure of silicone rubber foam improved the compressive property compared to that for the large cellular structure of silicone rubber foam.


2019 ◽  
Vol 39 (7-8) ◽  
pp. 260-277
Author(s):  
Wei Zhang ◽  
Xiaoyu Bai ◽  
Bowen Hou ◽  
Yadong Sun ◽  
Xiao Han

The cellular structure can exhibit many special mechanical behaviors due to its variable cell shape. A three-dimensional compression-twist cell structure based on the rotation mechanism of two-dimensional chiral cell structure is developed, which has twist deformation under axial compression. The shape of three-dimensional compression-twist cell structure is determined through cell angle, cell length, and thickness ratio. Analytical expressions of effective Young’s modulus, Poisson’s ratio, and twist angle are derived by using beam theory, which have a good agreement with the finite element calculations and the deformation process of the cell is discussed. To work on the effect of geometric parameters of cell on the mechanical properties, a finite element analysis model of compression-twist cell structure is carried out, which shows the process of elastic and plastic deformation under compression. Effects of cell angle, cell length, and thickness ratio are fully discussed, which indicate that cell angle has obvious nonlinear effect on relative twist angle and could stiffen it. Finally, a compression-twist cell structure sample is made through three-dimensional printing, and an in-plane compressive experiment is carried out to prove analytical and finite element analysis results.


2016 ◽  
Vol 58 (3) ◽  
pp. 269-279 ◽  
Author(s):  
Hassan S. Hedia ◽  
Saad M. Aldousari ◽  
Ahmed K. Abdellatif ◽  
Gamal S. Abdelhaffez

2011 ◽  
Vol 243-249 ◽  
pp. 1461-1465
Author(s):  
Chuan Min Zhang ◽  
Chao He Chen ◽  
Ye Fan Chen

The paper makes an analysis of the reinforced concrete beams with exterior FRP Shell in Finite Element, and compares it with the test results. The results show that, by means of this model, mechanical properties of reinforced concrete beams with exterior FRP shell can be predicted better. However, the larger the load, the larger deviation between calculated values and test values. Hence, if more accurate calculation is required, issues of contact interface between the reinforced concrete beams and the FRP shell should be taken into consideration.


2013 ◽  
Vol 351-352 ◽  
pp. 782-785
Author(s):  
Yong Bing Liu ◽  
Xiao Zhong Zhang

Established the mechanical model of simply supported deep beam, calculation and analysis of simple supported deep beams by using finite element analysis software ANSYS, simulated the force characteristics and work performance of the deep beam. Provides the reference for the design and construction of deep beams.


2021 ◽  
pp. 073168442199086
Author(s):  
Yunfei Qu ◽  
Dian Wang ◽  
Hongye Zhang

The double V-wing honeycomb can be applied in many fields because of its lower mass and higher performance. In this study, the volume, in-plane elastic modulus and unit cell area of the double V-wing honeycomb were analytically derived, which became parts of the theoretical basis of the novel equivalent method. Based on mass, plateau load, in-plane elastic modulus, compression strain and energy absorption of the double V-wing honeycomb, a novel equivalent method mapping relationship between the thickness–width ratio and the basic parameters was established. The various size factor of the equivalent honeycomb model was denoted as n and constructed by the explicit finite element analysis method. The mechanical properties and energy absorption performance for equivalent honeycombs were investigated and compared with hexagonal honeycombs under dynamic impact. Numerical results showed a well coincidence for each honeycomb under dynamic impact before 0.009 s. Honeycombs with the same thickness–width ratio had similar mechanical properties and energy absorption characteristics. The equivalent method was verified by theoretical analysis, finite element analysis and experimental testing. Equivalent honeycombs exceeded the initial honeycomb in performance efficiency. Improvement of performance and weight loss reached 173.9% and 13.3% to the initial honeycomb. The double V-wing honeycomb possessed stronger impact resistance and better load-bearing capacity than the hexagonal honeycomb under impact in this study. The equivalent method could be applied to select the optimum honeycomb based on requirements and improve the efficiency of the double V-wing honeycomb.


Sign in / Sign up

Export Citation Format

Share Document