scholarly journals Chemical Characterisation of Silanised Zirconia Nanoparticles and Their Effects on the Properties of PMMA-Zirconia Nanocomposites

Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3212
Author(s):  
Saleh Zidan ◽  
Nikolaos Silikas ◽  
Suhad Al-Nasrawi ◽  
Julfikar Haider ◽  
Abdulrahman Alshabib ◽  
...  

Objectives: The objective of this study was to investigate the mechanical properties of high-impact (HI) heat-cured acrylic resin (PMMA) reinforced with silane-treated zirconia nanoparticles. Methods: Forty-five PMMA specimens reinforced with zirconia were fabricated and divided into three groups: Pure HI PMMA (control group), PMMA reinforced with 3 wt.% of non-silanised zirconia nanoparticles and PMMA reinforced with 3 wt.% of silanised zirconia nanoparticles. Silanised and non-silanised zirconia nanoparticles were analysed with Fourier Transform Infrared (FTIR) Spectroscopy. For measuring the flexural modulus and strength, a Zwick universal tester was used, and for surface hardness, a Vickers hardness tester were used. Furthermore, raw materials and fractured surfaces were analysed using Scanning Electron Microscopy (SEM). A one-way ANOVA test followed by a post-hoc Bonferroni test was employed to analyse the data. Results: The results showed that the mean values for flexural strength (83.5 ± 6.2 MPa) and surface hardness (20.1 ± 2.3 kg/mm2) of the group containing 3 wt.% treated zirconia increased significantly (p < 0.05) in comparison to the specimens in the group containing non-treated zirconia (59.9 ± 7.1 MPa; 15.0 ± 0.2 kg/mm2) and the control group (72.4 ± 8.6 MPa; 17.1 ± 0.9 kg/mm2). However, the group with silanised zirconia showed an increase in flexural modulus (2313 ± 161 MPa) but was not significantly different (p > 0.05) from the non-silanised group (2207 ± 252 MPa) and the control group (1971 ± 235 MPa). Conclusion: Silane-treated zirconia nano-filler improves the surface hardness and flexural strength of HI PMMA-zirconia nanocomposites, giving a potentially longer service life of the denture base.

2018 ◽  
Vol 11 (3) ◽  
pp. 1573-1581 ◽  
Author(s):  
Maha M. Turki ◽  
Faiza M. Abdul-Ameer

Scleral acrylic resin is widely used to synthesize ocular prosthesis. However, the properties of this material change over time, thus requiring the prosthesis to be refabricated. Many studies were conducted to improve these properties by reinforcing this material with nanoparticles. This study aims to evaluate the effect of silver nanoparticle powder on the mechanical properties (transverse flexural strength, impact strength, shear bond strength, surface microhardness, and surface roughness) of scleral acrylic resin used for ocular prostheses. Two concentrations were selected from the pilot study and evaluated for their effects on scleral acrylic resin properties. According to the pilot study, 0.01 and 0.02wt% AgNPs powder improved the transverse flexural strength, microhardness, and surface roughness compared with other percentages. The specimens in the main study were divided into (3) main groups, (50) specimens without additives (control group A), (50) experimental specimens (with 0.01wt% AgNPs group B), and (50) experimental specimens (with 0.02 wt% AgNPs group C). Each group was subdivided into (5) equal subgroups depending on the tests used. The data were studied using one way ANOVA and post hoc LSD test. At 0.01 wt% AgNPs addition, the mean values of transverse flexural strength insignificantly increased (p> 0.05), and those of impact strength and shear bond strength significantly increased (p< 0.05) compared with those of the control group. At 0.02 wt% AgNPs addition (group C), the mean value of transverse flexural strength significantly increased (p< 0.05), that of impact strength insignificantly increased (p> 0.05), and that of shear bond strength increased with high significance (p< 0.01) compared with those of the control group. Group C showed insignificant increase in the mean values of transverse flexural strength, impact strength, and shear bond strength (p. 0.05) compared with group B. The scleral acrylic resin added with 0.01 and 0.02 wt% AgNPs showed insignificant increase in microhardness and insignificant decrease in surface roughness. The addition of AgNPs powder in both concentrations improved the mechanical properties of scleral acrylic resin used for ocular prostheses.


2010 ◽  
Vol 21 (1) ◽  
pp. 55-59 ◽  
Author(s):  
Fabiana Gouveia Straioto ◽  
Antonio Pedro Ricomini Filho ◽  
Alfredo Júlio Fernandes Neto ◽  
Altair Antoninha Del Bel Cury

The addition of different polymers, such as polytetrafluorethylene (PTFE), to denture base resins could be an option to modify acrylic resin mechanical properties. This study evaluated the surface hardness, impact and flexural strength, flexural modulus and peak load of 2 acrylic resins, one subjected to a long and another subjected to a short polymerization cycle, which were prepared with or without the addition of 2% PTFE. Four groups were formed according to the polymerization cycle and addition or not of PTFE. Forty specimens were prepared for each test (10 per group) with the following dimensions: hardness (30 mm diameter x 5 mm thick), impact strength (50 x 6 x 4 mm) and flexural strength (64 x 10 x 3.3 mm) test. The results of the flexural strength test allowed calculating flexural modulus and peak of load values. All tests were performed in accordance with the ISO 1567:1999 standard. Data were analyzed statistically by ANOVA and Tukey's test with the level of significance set at 5%. No statistically significant differences (p>0.05) were found for surface hardness. Flexural strength, impact strength and peak load were significantly higher (p<0.05) for resins without added PTFE. The flexural modulus of the acrylic resin with incorporated 2% PTFE polymerized by long cycle was significantly higher (p<0.05) than that of the other resins. Within the limits of this study, it may be concluded that the addition of PTFE did not improve the mechanical properties of the evaluated acrylic resins.


2019 ◽  
Vol 31 (2) ◽  
pp. 123
Author(s):  
Rosa Sharon Suhono ◽  
Endang Wahyuningtyas ◽  
Titik Ismiyati

Introduction: Silica has been used as a coating material on acrylic resin denture plates to reduce the attachment of C. albicans, and acrylic resin denture coating application has been shown to increase the resistance. Acrylic resin as denture plate has many advantages, including good aesthetical aspect, easy to be manipulated, and relatively low costs. Acrylic resin also has disadvantages, namely the presence of residual monomers, low abrasion resistance, and broken easily. Residual monomers have poor biocompatibility and can weaken the mechanical strength of acrylic resin dentures. The purpose of this study was to analyse the silica coating application on heat-cured acrylic resin plates towards the surface hardness and the amount of residual monomers. Methods: This study used as much as 40 rod-shaped heat-cured acrylic resin specimens measured 13 x 13 x 2 mm. Specimens were divided into 2 groups (n = 20), namely the control group and the acrylic resin plate group applied with silica coating. Specimens in the treatment group applied with silica coating material using the dip-coating method. The surface hardness was tested using the Vickers hardness tester, and the amount of residual monomers was tested using gas chromatography. All data were analysed using an independent t-test. Results: Surface hardness in the group applied with silica coating was significantly higher than the control group (p < 0.05), while the remaining monomers of acrylic resin plate specimens in the group applied with silica coating were significantly lower than the control group (p < 0.05). Conclusion: Silica coating increases the surface hardness and decreases the amount of residual monomer of heat-cured acrylic resin.Keywords: Silica coating, surface hardness, residual monomer, acrylic resin


Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1344 ◽  
Author(s):  
Saleh Zidan ◽  
Nikolaos Silikas ◽  
Abdulaziz Alhotan ◽  
Julfikar Haider ◽  
Julian Yates

Acrylic resin PMMA (poly-methyl methacrylate) is used in the manufacture of denture bases but its mechanical properties can be deficient in this role. This study investigated the mechanical properties (flexural strength, fracture toughness, impact strength, and hardness) and fracture behavior of a commercial, high impact (HI), heat-cured denture base acrylic resin impregnated with different concentrations of yttria-stabilized zirconia (ZrO2) nanoparticles. Six groups were prepared having different wt% concentrations of ZrO2 nanoparticles: 0% (control), 1.5%, 3%, 5%, 7%, and 10%, respectively. Flexural strength and flexural modulus were measured using a three-point bending test and surface hardness was evaluated using the Vickers hardness test. Fracture toughness and impact strength were evaluated using a single edge bending test and Charpy impact instrument. The fractured surfaces of impact test specimens were also observed using a scanning electron microscope (SEM). Statistical analyses were conducted on the data obtained from the experiments. The mean flexural strength of ZrO2/PMMA nanocomposites (84 ± 6 MPa) at 3 wt% zirconia was significantly greater than that of the control group (72 ± 9 MPa) (p < 0.05). The mean flexural modulus was also significantly improved with different concentrations of zirconia when compared to the control group, with 5 wt% zirconia demonstrating the largest (23%) improvement. The mean fracture toughness increased in the group containing 5 wt% zirconia compared to the control group, but it was not significant. However, the median impact strength for all groups containing zirconia generally decreased when compared to the control group. Vickers hardness (HV) values significantly increased with an increase in ZrO2 content, with the highest values obtained at 10 wt%, at 0 day (22.9 HV0.05) in dry conditions when compared to the values obtained after immersing the specimens for seven days (18.4 HV0.05) and 45 days (16.3 HV0.05) in distilled water. Incorporation of ZrO2 nanoparticles into high impact PMMA resin significantly improved flexural strength, flexural modulus, fracture toughness and surface hardness, with an optimum concentration of 3–5 wt% zirconia. However, the impact strength of the nanocomposites decreased, apart from the 5 wt% zirconia group.


2020 ◽  
Vol 5 (1) ◽  
pp. 10
Author(s):  
Nadya Islami ◽  
Debby Saputera ◽  
Rahmad Arifin

Background: The denture base material that is widely used is heat cured acrylic resin. One of mechanical properties of acrylic resin that must be considered in the selection of the basic denture material is flexural strength. Flexural strength is needed, among others, to resist the chewing power that must be received by dentures. The commonly used denture cleanser is Alkaline peroxide. 100% small white ginger extract can be used as natural denture cleanser. Objective:  This study aimed to compare the flexural strength of heat cured acrylic base which in soaked 100% small white ginger extract with Alkaline peroxide solution as artificial denture cleanser. Method: This study was a pure laboratory experimental study with post test only with control group design, using simple random sampling. The sample was rectangular with a size of 65x10x2,5 mm. The number of samples used was 24 heat cured resin acrylic which was divided into 3 immersion groups, 100% small ginger extract, Alkaline peroxide, and aquades. The immersion carried out for 3 days 19 hours 25 minutes, obtained from 5 minutes denture cleanser presentation every day for 3 years. Flexural strength was tested using a Universal Testing Machine 3 Point Bending. Result: The everage flexural strength value of heat cured acrylic resin after soaked in 100% small white ginger extract was 70,98, in Alkaline peroxide 87,37, and 91,05 in aquades. The data was annalyzed using parametric One Way ANOVA test and Post Hoc Bonferroni test. Conclusion: The flexural strength of heat cured acrylic resin that soaked in 100% small white ginger extract is smaller than Alkaline peroxide after immersed for 3 days 19 hours 25 minutes.


2013 ◽  
Vol 14 (1) ◽  
pp. 80-83 ◽  
Author(s):  
Naveen S Yadav ◽  
Teerthesh Jain ◽  
Amrita Pandita ◽  
SMA Feroz ◽  
UK Kartika ◽  
...  

ABSTRACT Aim The purpose of this study was to evaluate and compare the flexural strength of commercially available acrylic (trevalone) and modified polymethylmethacrylate (PMMA). Materials and methods Four groups were tested; Group 1— control group regular MMA, group 2—2% methacrylic acid, 88% MMA, group 3—16% methacrylic acid, 84% MMA group 4— 20% methacrylic acid, 80% MMA 15 resin specimens of each group were polymerized. After processing, the specimens were subjected for flexural strength testing using three point bending test in a Universal Testing Machine. All data was statistically analyzed with one-way ANOVA, differences within the groups were analyzed by Scheffe's analysis. Results As the ratio of incorporated methacrylic acid to PMMA increased, the flexural strength decreased. Analysis of data revealed a significant decrease in flexural strength of specimens (p < 0.000) after incorporation of 12%, 16%, 20% methacrylic acid to heat polymerized acrylic resin, when compared with the control group. Lowest flexural strength was observed with specimens containing 20% methacrylic acid and highest flexural strength was observed with specimens containing conventional monomer without methacrylic acid. Conclusion It was observed that as the concentration of methacrylic acid in heat polymerized acrylic resin increases, the flexural strength decreases. Lowest flexural strength was observed with specimens containing 20% methacrylic acid and highest flexural strength was observed with specimens containing conventional monomer without methacrylic acid. Clinical significance The major advantages of addition of methacrylic acid to polymethylmethacrylate could be for the elderly people with restricted manual dexterity or cognitive disturbances, especially for patients who do not follow an adequate denture cleansing protocol and diabetic patients who are more susceptible for denture stomatitis. How to cite this article Jain T, Yadav NS, Pandita A, Feroz SMA, Kartika UK, Singh PP. A Comparative Evaluation of Flexural Strength of Commercially Available Acrylic and Modified Polymethylmethacrylate: An in vitro Study. J Contemp Dent Pract 2013;14(1):80-83.


2015 ◽  
Vol 26 (4) ◽  
pp. 404-408 ◽  
Author(s):  
Carolina Noronha Ferraz Arruda ◽  
Danilo Balero Sorgini ◽  
Viviane de Cássia Oliveira ◽  
Ana Paula Macedo ◽  
Cláudia Helena Silva Lovato ◽  
...  

<p>This study evaluated color stability, surface roughness and flexural strength of acrylic resin after immersion in alkaline peroxide and alkaline hypochlorite solutions, simulating a five-year-period of use. Sixty disc-shaped (16x4 mm) and 60 rectangular specimens (65x10x3.3 mm) were prepared from heat-polymerized acrylic resin (Lucitone 550) and assigned to 3 groups (n=20) of immersion (20 min): C1: distilled water; AP: warm water and one alkaline peroxide tablet; SH: 0.5% NaOCl solution. Color data (∆E) were determined by a colorimeter and also quantified according to the National Bureau of Standards units. A rugosimeter was used to measure roughness (μm) and the flexural strength (MPa) was measured using a universal testing machine. Data were evaluated by Kruskal-Wallis followed by Dunn tests (color stability and surface roughness) and by one-way ANOVA and Bonferroni test (flexural strength). For all tests was considered α=0.05. AP {0.79 (0.66;1.42)} caused color alteration significantly higher than C1 {0.45 (0.37;0.57)} and SH {0.34 (0.25;0.42)}. The mean ∆Ε values quantified by NBS were classified as "trace" for C1 (0.43) and SH (0.31) and "slight" for AP (0.96). SH {-0.015 (-0.023;0.003)} caused significantly higher ΔRa than the C1 {0.000 (-0.004;0.010)} and AP {0.000 (-0.009;0.008)} groups. There was no statistically significant difference among the solutions for flexural strength (C1: 84.62±16.00, AP: 85.63±12.99, SH: 84.22±14.72). It was concluded that immersion in alkaline peroxide and NaOCl solutions simulating a five-year of 20 min daily soaking did not cause clinically significant adverse effects on the heat-polymerized acrylic resin.</p>


2019 ◽  
Vol 10 (2) ◽  
pp. 1464-1469
Author(s):  
Adnan R. Al Assal ◽  
Abdalbaset A Fatalla ◽  
Mohammed Moudhaffar ◽  
Ghasak H Jani

The general upgrading of polymer denture base material and research continuously looking for ideal restorative dental material with better properties, adequate esthetic properties, less expensive and easier to handle material to develop photo polymerization dental materials. This study was conducted to evaluate the effect of addition polyamide on mechanical microparticle properties light cure denture base material. One hindered sixty specimens from light-cured acrylic resin (Aurora). The divided mainly into four groups according to test used (Transverse strength test, impact strength test, hardness test and tensile strength test) with 40 specimens for each group. The results show an increase in Transverse strength, impact strength, hardness and tensile strength in all experimental group when compared to control group the highest mean values for all tests included in the study appeared in group B 1% polyamide. The addition of polyamide microparticle improves transverse, tensile, impact strength and hardness properties of denture base material.


2020 ◽  
Vol 23 (3) ◽  
Author(s):  
João Gabriel Ezequiel Possari ◽  
Samia Carolina Mota Sacorague ◽  
Fernanda Alves Feitosa ◽  
Marcela Moreira Penteado ◽  
Luigi Giovanni Bernardo Sichi ◽  
...  

Objective: To evaluate the influence of glass fiber reinforcements used in nautical and sports products on the flexural strength of acrylic resin. Materials and methods: Thirty thermoactivated acrylic resin bars (25 x 10.5 x 3.3 mm) were used. The samples were shared in 3 groups: bars with no glass fiber (control group, n = 10), bars reinforced with glass fiber and 0.18 mm thickness (group F1, n = 10) and bars reinforced with glass fiber and 0.80 mm thickness (group F2, n = 10). After 48 hours, samples were submitted to compression test in order to evaluate flexural strength. Obtained data were statistically analyzed with significance level of 5 %. Results: It was observed that the use of glass fiber effectively increased the flexural strength compared to the control group; the thickness of the glass fiber, however, did not present statistical differences. Conclusion: The use of fiber glass is a simple and cost-effective alternative to improve acrylic resin performance.KeywordsFlexural strength; Water sports; Dentures.


Sign in / Sign up

Export Citation Format

Share Document