scholarly journals Electrochemically Activated Screen-Printed Carbon Sensor Modified with Anionic Surfactant (aSPCE/SDS) for Simultaneous Determination of Paracetamol, Diclofenac and Tramadol

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3581
Author(s):  
Jędrzej Kozak ◽  
Katarzyna Tyszczuk-Rotko ◽  
Magdalena Wójciak ◽  
Ireneusz Sowa

In this work, an electrochemically activated screen-printed carbon electrode modified with sodium dodecyl sulfate (aSPCE/SDS) was proposed for the simultaneous determination of paracetamol (PA), diclofenac (DF), and tramadol (TR). Changes of surface morphology and electrochemical behaviour of the electrode after the electrochemical activation with H2O2 and SDS surface modification were studied by scanning electron microscopy (SEM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The influence of various parameters on the responses of the aSPCE/SDS such as pH and concentration of the buffer, SDS concentration, and techniques parameters were investigated. Using optimised conditions (Eacc. of −0.4 V, tacc. of 120 s, ΔEA of 150 mV, ν of 250 mV s−1, and tm of 10 ms), the aSPCE/SDS showed a good linear response in the concentration ranges of 5.0 × 10−8–2.0 × 10−5 for PA, 1.0 × 10−9–2.0 × 10−7 for DF, and 1.0 × 10−8–2.0 × 10−7 and 2.0 × 10−7–2.0 × 10−6 mol L−1 for TR. The limits of detection obtained during the simultaneous determination of PA, DF, and TR are 1.49 × 10−8 mol L−1, 2.10 × 10−10 mol L−1, and 1.71 × 10−9 mol L−1, respectively. The selectivity of the aSPCE/SDS was evaluated by examination of the impact of some inorganic and organic substances that are commonly present in environmental and biological samples on the responses of PA, DF, and TR. Finally, the differential pulse adsorptive stripping voltammetric (DPAdSV) procedure using the aSPCE/SDS was successfully applied for the determination of PA, DF, and TR in river water and serum samples as well as pharmaceuticals.

Molecules ◽  
2019 ◽  
Vol 24 (17) ◽  
pp. 3041 ◽  
Author(s):  
Yanqing Liu ◽  
Gengxin Hu ◽  
Hongwu Wang ◽  
Su Yao ◽  
Yinjian Ye

A hybrid nanocomposite consisting of hydroxylated multi-walled carbon nanotubes (MWCNTs−OH) and cube mesoporous carbon (CMK−8) was applied in this study to construct an MWCNT−OH/CMK−8/gold electrode (GE) electrochemical sensor and simultaneously perform the electro-reduction of olaquindox (OLA) and carbadox (CBX). The respective peak currents of CBX and OLA on the modified electrode increased by 720- and 595-fold relative to the peak current of GE. The performances of the modified electrode were investigated with electrochemical impedance spectroscopy, cyclic voltammetry, and differential pulse voltammetry. Then, the modified electrodes were used for the individual and simultaneous determination of OLA and CBX. The fabricated sensor demonstrated a linear response at 0.2–500 nmol/L in optimum experimental conditions, and the detection limits were 104.1 and 62.9 pmol/L for the simultaneous determination of OLA and CBX, respectively. As for individual determination, wide linear relationships were obtained for the detected OLA with levels of 0.05–500 nmol/L with LOD of 20.7 pmol/L and the detected CBX with levels of 0.10–500 nmol/L with LOD of 50.2 pmol/L. The fabricated sensor was successfully used in the independent and simultaneous determination of OLA and CBX in spiked pork samples.


Author(s):  
Kuddusi Karaboduk

Abstract Objectives The aim of this study is to investigate the electrochemical behavior of Sudan II (SuII) using a screen printed gold electrode (SPGE) modified with 1,4-dithiothreitol (DTT) and to determine the amount of Sudan II by voltammetry. Materials and Methods A DTT modified screen printed gold electrode (DTT/SPGE) was fabricated and its application for differential pulse voltammetric (DPV) determination of SuII was reported. Fourier transform infrared spectroscopy (FT-IR), cyclic voltammetry (CV) and electrochemical impedance spectroscopy were used for the characterization of modified electrode. The effects of instrumental and chemical parameters were optimized for the determination of SuII. The fabricated electrode was used for the analysis of SuII in fortified and real samples. High performance liquid chromatography (HPLC) was preferred as a reference method for the evaluation of the obtained voltammetric results. Results The electrochemical studies and FT-IR demonstrated that the SPGE was modified with DTT. The obtained peak current at DTT/SPGE was 6.67 times higher than that recorded with SPGE. At the optimized conditions of DPV in pH = 2.5 of H2SO4, the oxidation peak current of SuII was proportional to its concentration in range: 0.001 - 1.500 μmol L -1 with a detection limit of 0.0002 μmol L -1 (S/N=3). For the analysis of SuII, 101.67 - 104.33% of recovery percentage was obtained. Conclusions A new electrode was successfully improved for the determination of SuII. This highly selective and sensitive electrode supplied the fast determination of SuII in ketchup, chili sauce and salsa dip sauce. In addition, voltammetric and chromatographic results are found to be consistent.


2020 ◽  
Vol 23 ◽  
pp. 243-258 ◽  
Author(s):  
Shokoufeh Hassani ◽  
Armin Salek Maghsoudi ◽  
Milad Rezaei Akmal ◽  
Soheila Rahmani Rahmani ◽  
Pouria Sarihi ◽  
...  

Purpose: The current project aimed to design a simple, highly sensitive, and economical label-free electrochemical aptasensor for determination of prostate-specific antigen (PSA), as the gold standard biomarker for prostate cancer diagnosis. The aptasensor was set up using a screen-printed carbon electrode (SPCE) modified by gold nanoparticles (Au NPs) conjugated to thiolated aptamers. Methods: Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were implemented for electrochemical (EC) characterization of the aptasensor. The determination of PSA was also performed through differential pulse voltammetry (DPV) in [Fe (CN) 6]3-/4- electrolyte solution. Results: The present aptasensor was shown an outstanding linear response in the concentration range of 1 pg/mL - 200 ng/mL with a remarkably lower limit of detection of 0.077 pg/mL. The optimum concentration for PSA separation and the optimum incubation time for antigen-aptamer binding were determined by observing and electing the highest electrochemical responses in a specified time or concentration. Conclusion: According to the results of the specificity tests, the designed aptasensor did not show any significant interactions with other analytes in real samples. Clinical functionality of the aptasensor was appraised in serum samples of healthy individuals and patients examining the PSA level through the fabricated aptasensor and the reference methods. Both methods are comparable in sensitivity. The present fabricated PSA aptasensor with substantial characteristics of ultra-sensitivity and cost-effectiveness can be conventionally built and used for the routine check-up of the men for prostate problems.


2010 ◽  
Vol 22 (24) ◽  
pp. 2924-2930 ◽  
Author(s):  
Ana Calvo-Pérez ◽  
Olga Domínguez-Renedo ◽  
M. Asunción Alonso-Lomillo ◽  
M. Julia Arcos-Martínez

2005 ◽  
Vol 88 (2) ◽  
pp. 428-435 ◽  
Author(s):  
Maria-Elisa Capella-Peiró ◽  
Devasish Bose ◽  
Abhilasha Durgbanshi ◽  
Adriá Martinavarro-Domínguez ◽  
Mayte Gil-Agustí ◽  
...  

Abstract A simple and reliable micellar liquid chromatographic method was developed for the simultaneous determination of 3 opiates (codeine, morphine, and thebaine) in serum, using direct injection and ultraviolet detection. The separation of the drugs was optimized on a C18 column, thermostatically controlled at 25°C, by evaluating mobile phases containing sodium dodecyl sulfate (SDS) and various modifiers (propanol, butanol, or pentanol). Adequate resolution of the opiates was obtained with a chemometrics approach, in which retention was modeled as a first step by using the retention factors for several mobile phases. Next, an optimization criterion that takes into account the position and shape of the chromatographic peaks was applied. The 3 opiates were totally resolved and determined in 12 min with the mobile phase 0.15M SDS–7% (v/v) butanol buffered at pH 7. The limits of detection for codeine and morphine were greatly improved by using fluorimetric detection. Repeatability and intermediate precision were tested for 3 different concentrations of the drugs, and the relative standard deviations were <0.8% for most of the assays. Finally, the method was successfully applied to the determination of morphine and codeine in serum samples.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4231
Author(s):  
Jędrzej Kozak ◽  
Katarzyna Tyszczuk-Rotko ◽  
Magdalena Wójciak ◽  
Ireneusz Sowa ◽  
Marek Rotko

In this paper, a screen-printed boron-doped electrode (aSPBDDE) was subjected to electrochemical activation by cyclic voltammetry (CV) in 0.1 M NaOH and the response to rifampicin (RIF) oxidation was used as a testing probe. Changes in surface morphology and electrochemical behaviour of RIF before and after the electrochemical activation of SPBDDE were studied by scanning electron microscopy (SEM), CV and electrochemical impedance spectroscopy (EIS). The increase in number and size of pores in the modifier layer and reduction of charge transfer residence were likely responsible for electrochemical improvement of the analytical signal from RIF at the SPBDDE. Quantitative analysis of RIF by using differential pulse adsorptive stripping voltammetry in 0.1 mol L−1 solution of PBS of pH 3.0 ± 0.1 at the aSPBDDE was carried out. Using optimized conditions (Eacc of −0.45 V, tacc of 120 s, ΔEA of 150 mV, ν of 100 mV s−1 and tm of 5 ms), the RIF peak current increased linearly with the concentration in the four ranges: 0.002–0.02, 0.02–0.2, 0.2–2.0, and 2.0–20.0 nM. The limits of detection and quantification were calculated at 0.22 and 0.73 pM. The aSPBDDE showed satisfactory repeatability, reproducibility, and selectivity towards potential interferences. The applicability of the aSPBDDE for control analysis of RIF was demonstrated using river water samples and certified reference material of bovine urine.


Author(s):  
Mohammad Mehmandoust ◽  
Amirhossein Mehmandoust ◽  
Nevin Erk

A selective and facile voltammetric method based on titanium dioxide nanoparticles and Nafion (Nafion/TiO2 NPs) on the screen-printed electrode (SPE) was proposed for olopatadine determination. Followed by the synthesis of TiO2 nanoparticles, various methods, including high-resolution transmission electron microscopy (HR-TEM), ultraviolet-visible spectroscopy (UV-Vis), energy-dispersive X-ray (EDX) Raman spectrum, and electrochemical impedance spectroscopy (EIS) were utilized to characterize the nanomaterials. Nafion/TiO2 on the screen-printed electrode (NFN/TiO2/SPE) was used to determine olopatadine in concentration ranges of 0.01 to 0.07 and 0.07 to 14.6 µM with a limit of quantification as low as 7.0 nM, via differential pulse voltammetry technique. The NFN/TiO2/SPE offered a high-performance ability to determine olopatadine in the eye drop sample with satisfactory recovery data of 98.2–99.0 %. Also, the developed electrode showed good reproducibility, repeatability, and high selectivity features. The obtained results indicate that NFN/TiO2/SPE could be utilized as an appropriate candidate for electrochemical olopatadine sensing.


Author(s):  
Hina Shamshad ◽  
Ali Sayqal ◽  
Jahan Zeb ◽  
Agha Zeeshan Mirza

Abstract A simple, accurate and precise RP-HPLC method was developed for the simultaneous determination of chloroquine, pyrimethamine and cetirizine hydrochloride concentrations in bulk drug and human serum. The assay was performed using a mobile phase of methanol: water (70:30) at pH of 2.8 ± 0.05 on the Purospher C-18 column with UV detection at 230 nm and rosuvastatin used as an internal standard. The retention times observed for chloroquine, pyrimethamine and cetirizine hydrochloride were 3.5, 2.5 and 5.5 minutes, respectively. The method was found to be specific for the assayed drugs showing a linear response in the concentration range of 1–100 μg mL−1 with coefficients of determination values of (r = 0.999). The method was developed and validated according to ICH guidelines. The method was used to monitor the serum samples and was found to be sensitive for therapeutic purposes, showing the potential to be a useful tool for routine analysis in laboratories.


Sign in / Sign up

Export Citation Format

Share Document