scholarly journals Influence of Co Content and Chemical Nature of the Co Binder on the Corrosion Resistance of Nanostructured WC-Co Hardmetals in Acidic Solution

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3933
Author(s):  
Tamara Aleksandrov Fabijanić ◽  
Marin Kurtela ◽  
Matija Sakoman ◽  
Mateja Šnajdar Musa

The electrochemical corrosion resistance of nanostructured hardmetals with grain sizes dWC < 200 nm was researched concerning Co content and the chemical nature of the Co binder. Fully dense nanostructured hardmetals with the addition of grain growth inhibitors GGIs, VC and Cr3C2, and 5 wt.%Co, 10 wt.%Co, and 15 wt.%Co were developed by a one cycle sinter-HIP process. The samples were detailly characterized in terms of microstructural characteristics and researched in the solution of H2SO4 + CO2 by direct and alternative current techniques, including electrochemical impedance spectroscopy. Performed analysis revealed a homogeneous microstructure of equal and uniform grain size for different Co contents. The importance of GGIs content adjustment was established as a key factor of obtaining a homogeneous microstructure with WC grain size retained at the same values as in starting mixtures of different Co binder content. From the conducted research, Co content has shown to be the dominant influential factor governing electrochemical corrosion resistance of nanostructured hardmetals compared to the chemical composition of the Co binder and WC grain size. Negative values of Ecorr measured for 30 min in 96% H2SO4 + CO2 were obtained for all samples indicating material dissolution and instability in acidic solution. Higher values of Rp and lower values of icorr and vcorr were obtained for samples with lower Co content. In contrast, the anodic Tafel slope increases with increasing Co content which could be attributed to more pronounced oxidation of the higher Co content samples. Previously researched samples with the same composition but different chemical composition of the binder were introduced in the analysis. The chemical composition of the Co binder showed an influence; samples with lower relative magnetic saturation related to lower C content added to the starting mixtures and more W dissolved in the Co binder during the sintering process showed better corrosion resistance. WC-5Co sample with significantly lower magnetic saturation value showed approximately 30% lower corrosion rate. WC-10Co sample with slightly lower relative magnetic saturation value and showed approximately 10% lower corrosion rate. Higher content of Cr3C2 dissolved in the binder contributed to a lower corrosion rate. Slight VC increase did not contribute to corrosion resistance. Superior corrosion resistance is attributed to W and C dissolved in the Co binder, lower magnetic saturation, or WC grain size of the sintered sample.

2016 ◽  
Author(s):  
Hao Wang ◽  
Yihui Huang ◽  
Zhenying Du ◽  
Wenwu Zhang ◽  
Mengxue Bi

Laser shock peening is an innovation technique due to its significant improvement on the corrosion resistance of metallic materials. The study describes the effect of laser shock peening with multiple LSP impacts on the corrosion resistance of 2024 aluminum alloy in NaCl water solution with a mass fraction of 3.5% by using electrochemical technique. The experimental results reveal that LSP significantly reduces the corrosion rate of 2024 aluminum alloy, and as the number of impacts increases the corrosion rate decreases. The study demonstrates that LSP is an effective method to improve the electrochemical corrosion resistance of 2024 aluminum alloy.


Author(s):  
C. V. Cargua-López ◽  
D. C. Vásconez-Núñez ◽  
F. M. Tello-Oquendo

This paper presents the analysis of corrosion resistance of bronzes to aluminum in a controlled corrosive environment. Three alloys were studied CuAl4.5; CuAl7,1 and CuAl10,1 (ASTM B824), whose chemical composition was evaluated by spectrometry (OES). To determine its metal phases, chemical attacks were carried out with FeCl3, HCl in 95% Ethanol and FeCl3, HCl, CrO3 in distilled water. The microstructures obtained were characterized by metallography using two microscopes, an optical and a scanning electron (SEM) and the phases obtained were compared. Subsequently, electrochemical corrosion tests were performed on each alloy. The electrolyte used in the tests was artificial seawater (ASTM D1141) with a pH of 10 ± 0.3. Then, the corrosion products were characterized by EDS and SEM. Once the identification phase was over, the products were removed with a 50% HCl solution. Corrosive attack damage in each microstructural matrix was identified and corrosion rates for each alloy were evaluated. Finally, the corrosion rate data were correlated with the Al and Sn percentages of the alloy. The results show that the higher the increase in aluminum, the lower the corrosion rate, for a maximum limit of Al = 10.11%; Sn = 0.13%; CR = 5,170 mpy; In addition, it was shown that these alloys are effective for marine environments with high salinity. The correlation can be used to estimate the corrosion rate for different pH of the electrolytic medium of any type of ferrous or non-ferrous alloy whose variables are dependent on its chemical composition. Keywords: corrosion, alloy, metallography, microstructure, spectrometry, electrochemistry. Resumen Este artículo presenta el análisis la resistencia a la corrosión de bronces al aluminio en un ambiente corrosivo controlado. Se estudiaron tres aleaciones CuAl4,5; CuAl7,1 y CuAl10,1 (ASTM B824), cuya composición química fue evaluada por espectrometría (OES). Para determinar sus fases metálicas se realizaron ataques químicos con FeCl3, HCl en Etanol al 95% y FeCl3, HCl, CrO3 en agua destilada. Las microestructuras obtenidas se caracterizaron mediante metalografía empleando dos microscopios, un óptico y un electrónico de barrido (SEM) y se compararon las fases obtenidas. Posteriormente, se realizaron ensayos de corrosión electroquímica a cada aleación. El electrolito utilizado en los ensayos fue agua de mar artificial (ASTM D1141) con un pH 10±0.3. Sucesivamente, se caracterizaron los productos de la corrosión mediante microscopia SEM. Una vez terminada la fase de identificación, se removieron los productos con una solución al 50% HCl. Los daños del ataque corrosivo en cada matriz microestructural fueron identificados y las tasas de corrosión para cada aleación fueron evaluadas. Finalmente, se correlacionaron los datos de tasas de corrosión con los porcentajes de Al y Sn de la aleación. Los resultados muestran que a mayor aumento de aluminio existe una menor tasa de corrosión, para un límite máximo de Al=10,11%; Sn=0.13%; CR=5,170 mpy; además, se demostró que estas aleaciones son eficaces para ambientes marinos con alta salinidad. La correlación puede ser utilizada para estimar la tasa de corrosión para diferentes pH del medio electrolítico de cualquier tipo de aleación ferrosa o no ferrosa cuyas variables sean dependientes de su composición química. Palabras claves: corrosión, aleación, metalografía, microestructura, espectrometría, electroquímica.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4965
Author(s):  
Congwei Li ◽  
Jialei Zhu ◽  
Zhihai Cai ◽  
Le Mei ◽  
Xiangdong Jiao ◽  
...  

Combined with the technologies of underwater local dry laser cladding (ULDLC) and underwater local dry laser remelting (ULDLR), a duplex stainless steel (DSS) coating has been made in an underwater environment. The phase composition, microstructure, chemical components and electrochemical corrosion resistance was studied. The results show that after underwater laser remelting, the phase composition of DSS coating remains unchanged and the phase transformation from Widmanstätten austenite + intragranular austenite + (211) ferrite to (110) ferrite occurred. The ULDLR process can improve the corrosion resistance of the underwater local dry laser cladded coating. The corrosion resistance of remelted coating at 3 kW is the best, the corrosion resistance of remelted coating at 1kW and 5kW is similar and the corrosion resistance of (110) ferrite phase is better than grain boundary austenite phase. The ULDLC + ULDLR process can meet the requirements of efficient underwater maintenance, forming quality control and corrosion resistance. It can also be used to repair the surface of S32101 duplex stainless steel in underwater environment.


2021 ◽  
Vol 1016 ◽  
pp. 592-597
Author(s):  
Masato Ikoma ◽  
Taiki Morishige ◽  
Tetsuo Kikuchi ◽  
Ryuichi Yoshida ◽  
Toshihide Takenaka

Mg alloys are very attractive materials for transportation industry due to their toughness and lightness. Recycling Mg alloys is desired for energy saving that otherwise would be required to produce its primary metal. However, secondary produced Mg tends to contain a few impurity elements that deteriorate its corrosion resistance. For example, contamination of Mg alloy by Cu induces second phase of Mg2Cu and it works as strong cathode, resulting in the corrosion rate rapidly increasing. It was previously reported that the corrosion resistance of Mg with impurity Cu was remarkably improved by addition of alloying element Zn. Addition of Zn into Mg formed MgZn2 phase and incorporated Cu into MgZn2 phase instead of Mg2Cu formation. In this way, since Zn serves to improve the corrosion resistance of Mg, Mg alloy with high Zn concentration may form a lot of MgZn2 and may have better corrosion resistance even with high Cu concentration. In this work, the corrosion behavior of Mg-6mass%-1mass%Al (ZA61) with different Cu content up to 1mass% was investigated. As a result, ZA61-1.0Cu had much lower corrosion rate compared to Mg-0.2%Cu and the corrosion rate was almost the same as that of pure Mg.


2020 ◽  
Vol 67 (2) ◽  
pp. 150-157
Author(s):  
Kong Dejun ◽  
Li Jiahong

Purpose The purpose of this paper is to evaluate the salt spray corrosion (SSC) and electrochemical corrosion performances of CrNi, TiAlN/NiCr and CrNi–Al2O3–TiO2 coatings on H13 steel, which improved the corrosion resistance of H13 hot work mold. Design/methodology/approach CrNi, TiAlN/NiCr and CrNi–Al2O3–TiO2 coatings were fabricated on H13 hot work mold steel using a laser cladding and cathodic arc ion plating. The SSC and electrochemical performances of obtained coatings were investigated using a corrosion test chamber and electrochemical workstation, respectively. The corrosion morphologies, microstructure and phases were analyzed using an electron scanning microscope, optical microscope and X-ray diffraction, respectively, and the mechanisms of corrosion resistance were also discussed. Findings The CrNi coating is penetrated by corrosion media, producing the oxide of Fe3O4 on the coating surface; and the TiAlN coating is corroded to enter into the CrNi coating, forming the oxides of TiO and NiO, the mechanism is pitting corrosion, whereas the CrNi–Al2O3–TiO2 coating is not penetrated, with no oxides, showing the highest SSC resistance among the three kinds of coatings. The corrosion potential of CrNi coating, TiAlN/CrNi and CrNi–Al2O3–TiO2 coatings was –0.444, –0.481 and –0.334 V, respectively, and the corresponding polarization resistances were 3,074, 2,425 and 86,648 cm2, respectively. The electrochemical corrosion resistance of CrNi–Al2O3–TiO2 coating is the highest, which is enhanced by the additions of Al2O3 and TiO2. Originality/value The CrNi, TiAlN/CrNi and CrNi–Al2O3–TiO2 coatings on H13 hot work mold were firstly evaluated by the SSC and electrochemical performances.


Metals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 224 ◽  
Author(s):  
Tamara Aleksandrov Fabijanić ◽  
Marin Kurtela ◽  
Irbas Škrinjarić ◽  
Johannes Pötschke ◽  
Markus Mayer

The advantages of nanostructured cemented carbides are a uniform, homogenous microstructure and superior, high uniform mechanical properties, which makes them the best choice for wear-resistant applications. Wear-resistant applications in the chemical and petroleum industry, besides mechanical properties, require corrosion resistance of the parts. Co as a binder is not an optimal solution due to selective dissolution in an acidic environment. Thus, the development of cemented carbides with alternative binders to increase the corrosion resistance but still retaining mechanical properties is of common interest. Starting mixtures with WC powder, grain growth inhibitors GGIs; VC and Cr3C2, and an identical binder amount of 11-wt.% were prepared. GGIs were added to retain the size of the starting WC powder in the sintered samples. The parameters of the powder metallurgy process were adapted, and samples have been successfully consolidated. A very fine homogeneous microstructure with relatively uniform grain-size distribution and without microstructural defects in the form of carbide agglomerates and abnormal grain growth was achieved for both Ni-bonded and Co-bonded samples. Achieved mechanical properties, Vickers hardness, and Palmqvist toughness, of Ni-bonded near-nanostructured cemented carbides are slightly lower but still comparable to Co-bonded nanostructured cemented carbides. Two samples of each grade were researched by different electrochemical direct current corrosion techniques. The open circuit potential Ecorr, the linear polarisation resistance (LPR), the Tafel extrapolation method, and the electrochemical impedance spectroscopy (EIS) at room temperature in the solution of 3.5% NaCl. From the carried research, it was found that chemical composition of the binder significantly influenced the electrochemical corrosion resistance. Better corrosion resistance was observed for Ni-bonded samples compared to Co-bonded samples. The corrosion rate of Ni-bonded cemented carbides is approximately four times lower compared to Co-bonded cemented carbides.


Sign in / Sign up

Export Citation Format

Share Document