scholarly journals Novel Adsorbent Based on Banana Peel Waste for Removal of Heavy Metal Ions from Synthetic Solutions

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3946
Author(s):  
Mihai Negroiu ◽  
Anca Andreea Țurcanu ◽  
Ecaterina Matei ◽  
Maria Râpă ◽  
Cristina Ileana Covaliu ◽  
...  

Due to its valuable compounds, food waste has been gaining attention in different applications, such as life quality and environment. Combined with circular economy requirements, a valorization method for waste, especially banana waste, was to convert them into adsorbents with advanced properties. The banana waste, after thermal treatment, was used with high removal performances (100%) for the removal of heavy metals, such as Cr, Cu, Pb, and Zn, but their small particle size makes them very hard to recover and reuse. For this reason, a biopolymeric matrix was used to incorporate the banana waste. The matrix was chosen for its remarkable properties, such as low cost, biodegradability, low carbon footprint, and reduced environmental impact. In this research, different types of materials (simple banana peel ash BPA and combined with biopolymeric matrix, ALG–BPA, CS–BPA) were prepared, characterized, and tested. The materials were characterized by means of attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), optical microscopy (OM), scanning electron microscopy (SEM), and tested for the removal of metal ions from synthetic solutions using atomic absorption spectroscopy (AAS). The ALG–BPA material proved to be the most efficient in the removal of heavy metal ions from synthetic solution, reaching even 100% metal removal for Cr, Fe, Pb, and Zn, while the CS-based materials were the least efficient, presenting the best values for Cr and Fe ions with a removal efficiency of 34.14% and 28.38%, respectively. By adding BPA to CS, the adsorption properties of the material were slightly improved, but also only for Cr and Fe ions, to 37.09% and 57.78%.

2021 ◽  
Vol 12 (2) ◽  
pp. 1884-1898

Natural water gets contaminated with heavy metal ions because of industrial effluents' discharge into the aquatic environment. As these heavy metal ions cause various health hazards, they should be removed from the aqueous solution. Heavy metal ion concentration in the aqueous solution is very less, so conventional metal removal and recovery processes cannot be applied here. The adsorption method is a great alternative to all these processes as it is a cost-effective and easy method. The use of natural, low-cost materials as adsorbents is eco-friendly also. However, metal uptake capacity of low-cost materials is very less. So, modification is required for low-cost materials to increase their efficiency. In the present review, different modification procedures adopted by different researchers have been discussed. Different low-cost materials used are sawdust, fruit and vegetable wastes, soil, minerals, etc. The modifying agents are heat, acids, bases, and other chemicals. Nevertheless, most of the studies are limited to batch tests only. Future research should be carried out on the extension of batch tests to column study for the large-scale treatment of contaminated water, and the cost of modification procedures and their impact on the environment should also be assessed.


2020 ◽  
Vol 82 (12) ◽  
pp. 2962-2974
Author(s):  
Hua Deng ◽  
Qiuyan Li ◽  
Meijia Huang ◽  
Anyu Li ◽  
Junyu Zhang ◽  
...  

Abstract Low-cost banana stalk (Musa nana Lour.) biochar was prepared using oxygen-limited pyrolysis (at 500 °C and used), to remove heavy metal ions (including Zn(II), Mn(II) and Cu(II)) from aqueous solution. Adsorption experiments showed that the initial solution pH affected the ability of the biochar to adsorb heavy metal ions in single- and polymetal systems. Compared to Mn(II) and Zn(II), the biochar exhibited highly selective Cu(II) adsorption. The adsorption kinetics of all three metal ions followed the pseudo-second-order kinetic equation. The isotherm data demonstrated the Langmuir model fit for Zn(II), Mn(II) and Cu(II). The results showed that the chemical adsorption of single molecules was the main heavy metal removal mechanism. The maximum adsorption capacities (mg·g−1) were ranked as Cu(II) (134.88) > Mn(II) (109.10) > Zn(II) (108.10)) by the single-metal adsorption isotherms at 298 K. Moreover, characterization analysis was performed using Fourier transform infrared spectroscopy, the Brunauer-Emmett-Teller method, scanning electron microscopy with energy-dispersive X-ray spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The results revealed that ion exchange was likely crucial in Mn(II) and Zn(II) removal, while C-O, O-H and C = O possibly were key to Cu(II) removal by complexing or other reactions.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Abate Ayele ◽  
Setegn Haile ◽  
Digafe Alemu ◽  
M. Kamaraj

Human and industrial activities produce and discharge wastes containing heavy metals into the water resources making them polluted, threatening human health and the ecosystem. Biosorption, the process of passive cation binding by dead or living biomass, represents a potentially cost-effective way of eliminating toxic heavy metals from industrial wastewater. The abilities of microorganisms to remove metal ions in solution have been extensively studied; in particular, live and dead fungi have been recognized as a promising class of low-cost adsorbents for the removal of heavy metal ions. The biosorption behavior of fungal biomass is getting attention due to its several advantages; hence, it needs to be explored further to take its maximum advantage on wastewater treatment. This review discusses the live and dead fungi characteristics of sorption, factors influencing heavy metal removal, and the biosorption capacities for heavy metal ions removal and also discusses the biosorption mechanisms.


2012 ◽  
Vol 12 (2/3/4) ◽  
pp. 318 ◽  
Author(s):  
Ali Ahmadpour ◽  
Tahereh Rohani Bastami ◽  
Masumeh Tahmasbi ◽  
Mohammad Zabihi

2012 ◽  
Vol 518-523 ◽  
pp. 361-368 ◽  
Author(s):  
Rong Bing Fu ◽  
Xin Xing Liu ◽  
Fang Liu ◽  
Jin Ma ◽  
Yu Mei Ma ◽  
...  

A new permeable reactive composite electrode (PRCE) attached with a permeable reactive layer (PRL) of Fe0 and zeolite has been developed for soil pH control and the improved removal efficiency of heavy metal ions (Cd, Ni, Pb, Cu) from soil in electrokinetic remediation process. The effects of different composite electrodes on pH control and heavy metal removal efficiency were studied, and changes in the forms of heavy metals moved onto the electrodes were analyzed. The results showed that with acidic/alkaline zeolite added and renewed in time, the composite electrodes could effectively neutralize and capture H+ and OH- produced from electrolysis of the anolyte and catholyte, avoiding or delaying the formation of acidic/alkaline front in tested soil, preventing premature precipitation of heavy metal ions and over-acidification of soil, and thus significantly improved the heavy metal removal efficiency. Fe0 in composite electrodes could deoxidize and stabilize the heavy metal ions. After that capture and immobilization of the pollutants were achieved. The results also showed that, using "Fe0 + zeolite" PRCE in the cathode with timely renewal, after 15-day remediation with a DC voltage of 1.5 V/cm, the total removal rates of Cd, Pb, Cu and Ni were 49.4%, 47.1%, 36.7% and 39.2%, respectively.


2014 ◽  
Vol 625 ◽  
pp. 889-892 ◽  
Author(s):  
Safoura Daneshfozoun ◽  
Bawadi Abdullah ◽  
Mohd Azmuddin Abdullah

This study developed an effective and economical physical pretreatment of OPEFB to be used as biosorbent for the removal of heavy metal ions such as Cu+2, Zn+2and Pb2+. The effects of fibres sizes, metal ions concentration (100-1000 ppm), initial pH (4-10) and contact time (20-150 min) were investigated in batch system. Samples were characterized with Atomic Absorption Spectrometry (AAS), Transmission Electron Microscopy (TEM) and Fourier Transmission Infra-red Spectroscopy (FTIR). Results showed pH-dependence adsorption efficiency and increased adsorption with initial metal concentrations where more than 92% adsorption efficiency achieved. We have successfully developed an eco-friendly, low cost adsorbent without any chemical modification or excessive energy disposal.


2019 ◽  
Vol 124 ◽  
pp. 01051
Author(s):  
Y. Smyatskaya ◽  
A. Toumi ◽  
I. Atamaniuk ◽  
Ia. Vladimirov ◽  
F.K. Donaev ◽  
...  

In this paper, it is proposed to use the biomass of microalgae Chlorella sorokiniana as a biosorbent for wastewater treatment, as well as an oral sorbent. Biosorbents are capable of adsorbing both organic and inorganic compounds, including heavy metals. The sorption capacity depends on the type of aquatic plant and microalgae strain. The use of microalgae and aquatic plants as biosorbents for pollutant treatments is discussed in the introduction part. The biomass of microalgae Chlorella sorokiniana was chosen as the object of this study. The cultivation conditions (temperature, light, pH and aeration) and the optimal biomass harvesting parameters are presented. Dehydration of biomass was carried out in two ways: IR-drying and freeze-drying. The obtained samples were tested for the ability of the biomass to extract heavy metal ions (zinc, cadmium, zinc, copper) from standard solutions. The initial concentration of heavy metal ions in the working solutions was 10 mg/l. Results show that the lyophilized samples demonstrated up to 99.9% of heavy metal removal efficiency. The paper also presents the composition of Chlorella sorokiniana biomass, in which up to 40.97–41.87% are proteins. The analysis of the amino-acid composition showed a ratio of essential to non-essential amino-acids higher than 0.8. All the above results confirm the possibility of using microalgae biomass as an oral sorbent and as an additive in the production of functional foods.


2020 ◽  
Vol 15 ◽  
pp. 155892501989895
Author(s):  
Yaewon Park ◽  
Shuang Liu ◽  
Terrence Gardner ◽  
Drake Johnson ◽  
Aaron Keeler ◽  
...  

Manganese-oxidizing fungi support bioremediation through the conversion of manganese ions into manganese oxide deposits that in turn adsorb manganese and other heavy metal ions from the environment. Manganese-oxidizing fungi were immobilized onto nanofiber surfaces to assist remediation of heavy metal–contaminated water. Two fungal isolates, Coniothyrium sp. and Coprinellus sp., from a Superfund site (Lot 86, Farm Unit #1) water treatment system were incubated in the presence of nanofibers. Fungal hyphae had strong association with nanofiber surfaces. Upon fungal attachment to manganese chloride–seeded nanofibers, Coniothyrium sp. catalyzed the conformal deposition of manganese oxide along hyphae and nanofibers, but Coprinellus sp. catalyzed manganese oxide only along its hyphae. Fungi–nanofiber hybrids removed various heavy metals from the water. Heavy metal ions were adsorbed into manganese oxide crystalline structure, possibly by ion exchange with manganese within the manganese oxide. Hybrid materials of fungal hyphae and manganese oxides confined to nanofiber-adsorbed heavy metal ions from water.


Minerals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 291 ◽  
Author(s):  
Dongxiao Ouyang ◽  
Yuting Zhuo ◽  
Liang Hu ◽  
Qiang Zeng ◽  
Yuehua Hu ◽  
...  

Tailings generated from mineral processing have attracted worldwide concerns due to creating serious environmental pollution. In this work, porous adsorbents were prepared as a porous block by using silicate tailings, which can adsorb heavy metal ions from the solution and are easy to separate. The synthesized silicate porous material (SPM) was characterized by X-ray diffraction (XRD), Brunner–Emmet–Teller (BET), and scanning electron microscope (SEM). The material presented a surface area of 3.40 m2⸱g−1, a porosity of 54%, and the compressive strength of 0.6 MPa. The maximum adsorption capacities of Pb2+, Cd2+, and Cu2+ by SPM were 44.83 mg·g−1, 35.36 mg·g−1, and 32.26 mg·g−1, respectively. The experimental data were fitted well by the Freundlich and Langmuir adsorption models. The kinetics of the adsorption process were fitted well by the pseudo-first order kinetic equation. These results show that the porous materials prepared with silicate tailings could act as an effective and low-cost adsorbent for the removal of heavy metal ions from wastewater. This study may provide a new thought on the high-value utilization of tailing for alleviating environmental pressure.


Sign in / Sign up

Export Citation Format

Share Document