scholarly journals Paper Doped with Polyacrylonitrile Fibres Modified with 10,12–Pentacosadiynoic Acid

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4006
Author(s):  
Elżbieta Sąsiadek ◽  
Konrad Olejnik ◽  
Marek Kozicki

This work reports a modification of a fibrous cellulose material (paper) by the addition of polyacrylonitrile (PAN) fibres doped with 10,12–pentacosadiynoic acid (PDA). The fibres are sensitive to ultraviolet (UV) light. When the paper containing PAN–PDA is irradiated with UV light it changes colour to blue as a consequence of interaction of the light with PDA. The colour intensity is related to the absorbed dose, content of PAN–PDA fibres in the paper and the wavelength of UV radiation. The features of the paper are summarised after reflectance spectrophotometry and scanning microscopy analyses. All the properties of the modified paper were tested in accordance with adequate ISO standards. Moreover, a unique method for assessing the unevenness of the paper surface and the quality of printing was proposed by using a Python script (RGBreader) for the analysis of RGB colour channels. The modification applied to the paper can serve as a paper security system. The modified paper can act also as a UV radiation indicator.

2015 ◽  
Vol 23 (3) ◽  
pp. 228-240
Author(s):  
Erlon Lopes Pereira ◽  
Claudio Milton Montenegro Campos ◽  
Regina Batista Vilas Boas ◽  
Cristine Serafini Neves

Among the numerous processes reported for sterilization of contaminated effluents, the advanced oxidative process (AOP) stands out for being effective in polishing degrading dissolved organic compounds. When comparing the various AOP(s), the UV photic process is advantageous since does not use catalysts and oxidizing reagents but only UV degradation, thus resulting in an effluent suitable for reuse and avoiding financial expenses related to chemical consumption. The present study sought after evaluating the efficiency of UV light, generated by special lamps in photo-reactors, degrading dissolved compounds and sterilizing microorganisms present in the effluent of anaerobic reactors treating hog farm effluents, aimed at improving the quality of the treated wastewater. In this work, two photoreactors were constructed using PVC pipe measuring 100 mm in diameter and 1060 mm in length. The pipe ends were sealed with PVC caps and the photo-reactor lamps designed to act on the liquid surface, without immerse in the liquid. Photo-reactors coated with aluminum foil increased the efficiency of UV radiation. The lamp used in each of the reactors was the germicidal fluorescent type, with wavelength of 240 nm and power of 30 Watts. In all trials, the photic process observed using only UV radiation was not efficient for mineralization of soluble organic compounds, however with this process it was possible to modify the biodegradability of wastewater from pig farming.


1994 ◽  
Vol 33 (05) ◽  
pp. 206-214 ◽  
Author(s):  
J. Triller ◽  
H. U. Baer ◽  
Livia Geiger ◽  
H. F. Beer ◽  
C. Becker ◽  
...  

SummaryTwenty patients with unresectable hepatocellular carcinoma (HCC) were followed up to 5 years after transarterial radiotherapy with 90Y-resin particles. Diagnostic radioembolizations of 99mTc-macroaggregates facilitated scintigraphic assessment of activity distribution, dose evaluation and final procedural verification. The overall survival rates were 56, 38 and 14% (after 1, 2 and 3 years, resp.). Patients with unifocal HCC and a single feeding artery (n = 7) even presented 83, 67 and 40% (2 alive after 2.75 and 4 years). With multiple arteries (n = 7), the longest survival was 26 months. Patients with multifocal HCC survived up to 33 months after selective radioembolization. Quality of life was improved in all. Survival was positively correlated with absorbed dose but residual/recurrent tumour occurred even after ≥300 Gy. Post-treatment symptoms were minimal (35 applications), pulmonary shunt rates were correctly predicted and pulmonary complications avoided.


1997 ◽  
Vol 60 (6) ◽  
pp. 639-643 ◽  
Author(s):  
FUENG-LIN KUO ◽  
JOHN B. CAREY ◽  
STEVEN C. RICKE

The effects were investigated of 254-nm UV radiation on populations of Salmonella typhimurium, aerobes, and molds on the shells of eggs. In the first experiment, the CFU of attached S. typhimurium cells on unwashed clean shell eggs were determined after 0, 1, 3, 5, and 7 min of UV treatment (620 μW/cm2) on both ends of the egg. All UV treatments significantly reduced S. typhimurium CFU (P < .01). UVtreatment (620 μW/cm2) in 1-min alternating light and dark cycles for 5 min (three light and two dark) was compared to 0, 3, and 5 min of UV treatment. No significant differences in microbial populations were observed among light and dark cycles and the other UV treatments. In a subsequent experiment, the same UV treatments were utilized to evaluate photoreactivation. After UV exposure, eggs were exposed to 1 h of fluorescent light or I h of darkness or cultured immediately. S. typhimurium CFU were significantly (P < .01) reduced by the UV treatments. However, no significant differences between microbial populations exposed to UV treatment and UV radiation plus photoreactivation were detected. For studies of aerobic bacteria and molds, different UV treatment times (0, 15, and 30 min) at the intensity of 620 μW/cm2 and different intensities (620, 1350, and 1720 μW/cm2) for 15 min were evaluated. Mold CFU per egg were either 0 or 1 for all UV treatments and a 99% reduction of CFU of aerobic bacteria per egg were observed for all UV treatments. It appears from these studies that UV light can significantly reduce populations of S. typhimurium, aerobes, and molds on shell eggs.


Horticulturae ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 80
Author(s):  
Triston Hooks ◽  
Joseph Masabni ◽  
Ling Sun ◽  
Genhua Niu

Blue light and ultra-violet (UV) light have been shown to influence plant growth, morphology, and quality. In this study, we investigated the effects of pre-harvest supplemental lighting using UV-A and blue (UV-A/Blue) light and red and blue (RB) light on growth and nutritional quality of lettuce grown hydroponically in two greenhouse experiments. The RB spectrum was applied pre-harvest for two days or nights, while the UV-A/Blue spectrum was applied pre-harvest for two or four days or nights. All pre-harvest supplemental lighting treatments had a same duration of 12 h with a photon flux density (PFD) of 171 μmol m−2 s−1. Results of both experiments showed that pre-harvest supplemental lighting using UV A/Blue or RB light can increase the growth and nutritional quality of lettuce grown hydroponically. The enhancement of lettuce growth and nutritional quality by the pre-harvest supplemental lighting was more effective under low daily light integral (DLI) compared to a high DLI and tended to be more effective when applied during the night, regardless of spectrum.


Author(s):  
Charchit Kumar ◽  
Alejandro Palacios ◽  
Venkata A. Surapaneni ◽  
Georg Bold ◽  
Marc Thielen ◽  
...  

The surfaces of animals, plants and abiotic structures are not only important for organismal survival, but they have also inspired countless biomimetic and industrial applications. Additionally, the surfaces of animals and plants exhibit an unprecedented level of diversity, and animals often move on the surface of plants. Replicating these surfaces offers a number of advantages, such as preserving a surface that is likely to degrade over time, controlling for non-structural aspects of surfaces, such as compliance and chemistry, and being able to produce large areas of a small surface. In this paper, we compare three replication techniques among a number of species of plants, a technical surface and a rock. We then use two model parameters (cross-covariance function ratio and relative topography difference) to develop a unique method for quantitatively evaluating the quality of the replication. Finally, we outline future directions that can employ highly accurate surface replications, including ecological and evolutionary studies, biomechanical experiments, industrial applications and improving haptic properties of bioinspired surfaces. The recent advances associated with surface replication and imaging technology have formed a foundation on which to incorporate surface information into biological sciences and to improve industrial and biomimetic applications. This article is part of the theme issue ‘Bioinspired materials and surfaces for green science and technology’.


2019 ◽  
Vol 27 (01) ◽  
pp. 1950090
Author(s):  
HAIXIA YU ◽  
XIN PAN ◽  
WEIMING YANG ◽  
WENFU ZHANG ◽  
XIAOWEI ZHUANG

Bamboo material is widely used in outdoor applications. However, they are easily degraded when exposed to sunlight, their smooth surface will gradually turn to rough, and small cracks will appear and finally develop to large cracks. The paper presents a first-time investigation on the microstructure changes in the tangential section of Moso bamboo (Phyllostachys pubescens Mazel) radiated by artificial UV light. The results showed that the cracks mainly appeared at intercellular spaces of fibers where lignin content was high, the parenchyma cell walls and neighbor pits where the cell wall was very thin and more vulnerable than the other parts. In addition, the part of raised area and pit cavity tended to absorb more UV light radiation and showed more and larger cracks than the otherwhere. Cracks at the intercellular spaces of fibers were larger and bigger than those on the parenchyma cell walls. The cracks on the pits of the parenchyma cell walls normally appeared at one pit and then extended to the several surrounding pits. Bordered pits cavity showed more and larger cracks than the pits on the thin wall cells. The simple pits on the thick wall cells and the fiber cells were unaffected by UV radiation.


2009 ◽  
Vol 72 (6) ◽  
pp. 1255-1261 ◽  
Author(s):  
KERRI L. HARRIS ◽  
GERD BOBE ◽  
LESLIE D. BOURQUIN

Patulin is the most common mycotoxin found in apples and apple juices. The objective of this study was to determine the concentrations of patulin in (i) apple cider produced and marketed by Michigan apple cider mills during the fall seasons of 2002 to 2003 and 2003 to 2004 and (ii) apple juice and cider, including shelf-stable products, marketed in retail grocery stores in Michigan throughout 2005 and 2006. End product samples (n = 493) obtained from 104 Michigan apple cider mills were analyzed for patulin concentration by using solid-phase extraction followed by high-performance liquid chromatography. Patulin was detected (≥4 μg/liter) in 18.7% of all cider mill samples, with 11 samples (2.2%) having patulin concentrations of ≥50 μg/liter. A greater percentage of cider samples obtained from mills using thermal pasteurization contained detectable patulin (28.4%) than did those from mills using UV light radiation (13.5%) or no pathogen reduction treatment (17.0%). Among retail grocery store samples (n = 159), 23% of apple juice and cider samples contained detectable patulin, with 18 samples (11.3%) having patulin concentrations of ≥50 μg/liter. The U.S. Food and Drug Administration (FDA) action level for patulin is 50 μg/kg. Some apple juice samples obtained from retail grocery stores had exceptionally high patulin concentrations, ranging up to 2,700 μg/liter. Collectively, these results indicate that most apple cider and juice test samples from Michigan were below the FDA action level for patulin but that certain apple cider and juice processors have inadequate controls over patulin concentrations in final products. The industry, overall, should focus on improved quality of fruit used in juice production and improve culling procedures to reduce patulin concentrations.


1999 ◽  
Vol 65 (5) ◽  
pp. 2025-2031 ◽  
Author(s):  
Mohamed O. Elasri ◽  
Robert V. Miller

ABSTRACT We have developed a bioluminescent whole-cell biosensor that can be incorporated into biofilm ecosystems. RM4440 is a Pseudomonas aeruginosa FRD1 derivative that carries a plasmid-basedrecA-luxCDABE fusion. We immobilized RM4440 in an alginate matrix to simulate a biofilm, and we studied its response to UV radiation damage. The biofilm showed a protective property by physical shielding against UV C, UV B, and UV A. Absorption of UV light by the alginate matrix translated into a higher survival rate than observed with planktonic cells at similar input fluences. UV A was shown to be effectively blocked by the biofilm matrix and to have no detectable effects on cells contained in the biofilm. However, in the presence of photosensitizers (i.e., psoralen), UV A was effective in inducing light production and cell death. RM4440 has proved to be a useful tool to study microbial communities in a noninvasive manner.


2021 ◽  
Author(s):  
Khanh Q. Nguyen ◽  
Patrice Cousin ◽  
Khaled Mohamed ◽  
Mathieu Robert ◽  
Adel El-Safty ◽  
...  

Abstract High-density polyethylene (HDPE) pipe is one of the materials of interest for use in road drainage systems. The combination of ultraviolet (UV) light, temperature, and moisture can produce weak spots and lead to pipe degradation during the storage, installation, and repair process. The objective of this study was to evaluate changes in the chemical, morphological structure, and thermomechanical properties of recycled and virgin pipes under UV exposure. Laboratory accelerated aging tests were conducted by exposing pipes to UV for 3600 hours with an irradiance of 0.89 W/(m2 nm) at a wavelength of 340 nm. A cycle of 12 hours—comprised of 8 hours of UV radiation at 60°C and 4 hours of no UV radiation at 50°C corresponding to no water condensation—was performed to condition the specimens. HDPE specimens were taken out after 3600 hours and analyzed with FTIR (Fourier-transform infrared spectroscopy), SEM (scanning electron microscopy), DSC (differential scanning calorimetry), oxidative-induction time (OIT) measurements, and tensile tests. The results show that the recycled pipes maintained good properties and were not significantly affected by UV radiation, similarly to the virgin pipes. Statistical analysis using one-way analysis of variance (ANOVA) shows that there was no significant difference between tensile strength, elastic modulus, and hardness measurements before and after UV exposure. There were only a few small changes in the surface of the pipes. The addition of carbon black, antioxidants, and UV stabilizers prevented further aging of the pipes during UV exposure.


2005 ◽  
Vol 11 (5) ◽  
pp. 345-352 ◽  
Author(s):  
A. I. Cascales ◽  
E. Costell ◽  
F. Romojaro

Sensory quality of peach during ripening to assess the best state for consumption was analysed. Physical and chemical parameters commonly used for establishing the commercial quality of this fruit were also determined: Soluble solids, acidity, sugars, organic acids, chlorophyll, carotenoids, resistance to compression and to penetration and colour. Relationships among these parameters and sensory characteristics were also analysed. A panel of eight trained assessors evaluated intensities of 12 sensory attributes (1 for odour, 2 for colour, 4 for flavour and 5 for texture). The sensory attributes selected allowed the description of perceivable differences between peaches of different degrees of maturity, although the variation in intensity of the attributes followed different trends. Colour intensity increased and acidity, firmness and crispness decreased significantly with ripening. Intensity of flavour, sweetness and fruitiness increased significantly from the under-ripe to semi-ripe states, and then decreased on reaching ripeness. It can be concluded that the most suitable time for harvesting and consumption of this peach variety was the state described herein as semi-ripe, and that a high correlation existed between colour intensity and hardness and the instrumental measurements of colour and texture.


Sign in / Sign up

Export Citation Format

Share Document