scholarly journals USE OF PHOTOLYSIS (ARTIFICIAL RADIATION- UV) AS AN ADVANCED OXIDATION PROCESS (AOP) FOR POLISHING SWINE WASTEWATER TREATED IN ANAEROBIC REACTORS - DOI: 10.13083/1414-3984/reveng.v23n3p228-240

2015 ◽  
Vol 23 (3) ◽  
pp. 228-240
Author(s):  
Erlon Lopes Pereira ◽  
Claudio Milton Montenegro Campos ◽  
Regina Batista Vilas Boas ◽  
Cristine Serafini Neves

Among the numerous processes reported for sterilization of contaminated effluents, the advanced oxidative process (AOP) stands out for being effective in polishing degrading dissolved organic compounds. When comparing the various AOP(s), the UV photic process is advantageous since does not use catalysts and oxidizing reagents but only UV degradation, thus resulting in an effluent suitable for reuse and avoiding financial expenses related to chemical consumption. The present study sought after evaluating the efficiency of UV light, generated by special lamps in photo-reactors, degrading dissolved compounds and sterilizing microorganisms present in the effluent of anaerobic reactors treating hog farm effluents, aimed at improving the quality of the treated wastewater. In this work, two photoreactors were constructed using PVC pipe measuring 100 mm in diameter and 1060 mm in length. The pipe ends were sealed with PVC caps and the photo-reactor lamps designed to act on the liquid surface, without immerse in the liquid. Photo-reactors coated with aluminum foil increased the efficiency of UV radiation. The lamp used in each of the reactors was the germicidal fluorescent type, with wavelength of 240 nm and power of 30 Watts. In all trials, the photic process observed using only UV radiation was not efficient for mineralization of soluble organic compounds, however with this process it was possible to modify the biodegradability of wastewater from pig farming.

2021 ◽  
Author(s):  
Bijoli Mondal ◽  
Shib Sankar Basak ◽  
Arnab Das ◽  
Sananda Sarkar ◽  
Asok Adak

Abstract In the photochemical UV-H2O2 advanced oxidation process, H2O2 absorbs UV light and is decomposed to form hydroxyl radicals (OH·), which are highly excited and reactive for electron-rich organic compounds and hence can degrade organic compounds. In the present work, the UV-H2O2 process was investigated to degrade ciprofloxacin (CIP), one of India's widely used antibiotics, from aqueous solutions using a batch type UV reactor having photon flux = 1.9 (± 0.1) ×10-4 Einstein L-1 min-1. The effects of UV irradiation time on CIP degradation were investigated for both UV and UV-H2O2 processes. It was found that about 75% degradation of CIP was achieved within 60 s with initial CIP concentration and peroxide concentration of 10 mg L-1 and 1 mol H2O2/ mol CIP, respectively, at pH of 7(±0.1) and fluence dose of 113 mJ cm-2. The experimental data were analyzed by the first-order kinetics model to find out the time- and fluence-based degradation rate constants. Under optimized experimental conditions (initial CIP concentration, pH and H2O2 dose of 10 mg L-1, 7(±0.1) and 1.0 mol H2O2 / mol CIP, respectively), the fluence-based pseudo-first-order rate constant for the UV and UV-H2O2 processes were determined to be 1.28(±0.0) ×10-4 and 1.20(±0.04) ×10-2 cm2 mJ-1 respectively. The quantum yields at various pH under direct UV were calculated. The impacts of different process parameters such as H2O2 concentration, solution pH, initial CIP concentration, and wastewater matrix on CIP degradation were also investigated in detail. CIP degradation was favorable in acidic conditions. Six degradation products of CIP were identified. Results clearly showed the potentiality of the UV-H2O2 process for the degradation of antibiotics in wastewater.


2004 ◽  
Vol 50 (5) ◽  
pp. 329-334 ◽  
Author(s):  
S.G. Schrank ◽  
H.J. José ◽  
R.F.P.M. Moreira ◽  
H. Fr. Schröder

Many organic compounds contained in wastewater are resistant to conventional chemical and/or biological treatment. Because of this reason different degradation techniques are studied as an alternative to biological and classical physico-chemical processes. Advanced Oxidation Processes (AOPs) probably have developed to become the best options in the near future. AOP while making use of different reaction systems, are all characterised by the same chemical feature: production of OH radicals (*OH). The versatility of AOPs is also enhanced by the fact that they offer different possibilities for OH radical production, thus allowing them to conform to specific treatment requirements. The main problem with AOPs is their high cost. The application of solar technologies to these processes could help to diminish that problem by reducing the energy consumption required for generating UV radiation. In this work, different AOPs (O3, TiO2/UV, Fenton and H2O2/UV) were examined to treat tannery wastewater or as a pre-treatment step for improving the biodegradation of tannery wastewater, at different pH and dosage of the chemicals. Under certain circumstances retardation in biodegradation and/or an increase in toxicity may be observed within these treatment steps. Two different bioassays (Daphnia magna and Vibrio fischeri) have been used for testing the progress of toxicity during the treatment. In parallel other objectives were to analyse and identify organic compounds present in the untreated wastewater and arising degradation products in AOP treated wastewater samples. For this purpose substance specific techniques, e.g., gas chromatography - mass spectrometry (GC-MS) in positive electron impact (EI(+)) mode and atmospheric pressure ionisation (API) in combination with flow injection analysis (FIA) or liquid chromatography - mass and tandem mass spectrometry (LC-MS or LC-MS-MS) were performed.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4006
Author(s):  
Elżbieta Sąsiadek ◽  
Konrad Olejnik ◽  
Marek Kozicki

This work reports a modification of a fibrous cellulose material (paper) by the addition of polyacrylonitrile (PAN) fibres doped with 10,12–pentacosadiynoic acid (PDA). The fibres are sensitive to ultraviolet (UV) light. When the paper containing PAN–PDA is irradiated with UV light it changes colour to blue as a consequence of interaction of the light with PDA. The colour intensity is related to the absorbed dose, content of PAN–PDA fibres in the paper and the wavelength of UV radiation. The features of the paper are summarised after reflectance spectrophotometry and scanning microscopy analyses. All the properties of the modified paper were tested in accordance with adequate ISO standards. Moreover, a unique method for assessing the unevenness of the paper surface and the quality of printing was proposed by using a Python script (RGBreader) for the analysis of RGB colour channels. The modification applied to the paper can serve as a paper security system. The modified paper can act also as a UV radiation indicator.


2010 ◽  
Vol 13 (3) ◽  
pp. 92-102
Author(s):  
Trung Duc Le

The industrial production of ethanol by fermentation using molasses as main material that generates large quantity of wastewater. This wastewater contains high levels of colour and chemical oxygen demand (COD), that may causes serious environmental pollution. Most available treatment processes in Vietnam rely on biological methods, which often fail to treat waste water up to discharge standard. As always, it was reported that quality of treated wastewater could not meet Vietnameses discharge standard. So, it is necessary to improve the treatment efficiency of whole technological process and therefore, supplemental physico-chemical treatment step before biodegradation stage should be the appropriate choice. This study was carried out to assess the effect of coagulation process on decolourization and COD removal in molasses-based ethanol production wastewater using inorganic coaglutant under laboratory conditions. The experimental results showed that the reductions of COD and colour with the utilization of Al2(SO4)3 at pH 9.5 were 83% and 70%, respectively. Mixture FeSO4 – Al2(SO4)3 at pH 8.5 reduced 82% of colour and 70% of COD. With the addition of Polyacrylamide (PAM), the reduction efficiencies of colour, COD and turbidity by FeSO4 – Al2(SO4)3 were 87%, 73.1% and 94.1% correspondingly. It was indicated that PAM significantly reduced the turbidity of wastewater, however it virtually did not increase the efficiencies of colour and COD reduction. Furthermore, the coagulation processes using PAM usually produces a mount of sludge which is hard to be deposited.


1998 ◽  
Vol 38 (1) ◽  
pp. 87-95 ◽  
Author(s):  
M. Roš ◽  
J. Vrtovšek

A combined anaerobic anoxic aerobic reactor for the treatment of the industrial wastewater that contains nitrogen and complex organic compounds as well as its design procedure is presented. The purpose of our experiments was to find a simple methodology that would provide combined reactor design. The reactor is based on the combination of anaerobic, anoxic and aerobic process in one unit only. It was found that the HRT even under 1 hour in the anaerobic zone is long enough for the efficient transformation of complex organic compounds into readily biodegradable COD which is then used in dentrification process. In the N-NO3 concentration range 1.5-50 mg/l the denitrification rate could be expressed as half-order reaction when the CODrb was in excess. N-NO3 removal efficiency is controlled by the recycle flow from the aerobic to the anoxic zone. Nitrification rate can be expressed as first, half or zero-order reaction with respect to effluent N-NH4 concentration. Nitrification rate depends on the dissolved oxygen concentration and hydrodynamic conditions in the reactor. Case study for design of a pilot plant of the combined reactor for treatment of pre-treated pharmaceutical wastewater is shown. Characteristics of pre-treated wastewater were: COD=200 mg/l, BOD5=20 mg/l, N-Kjeldahl=80 mg/l, N-NH4=70 mg/l, N-NOx<1 mg/l, P-PO4=5 mg/l. Legal requirements for treated wastewater were: COD=<100 mg/l, BOD5<5 mg/l, N-NH4=<1 mg/l, N-NOx=<10 mg/l.


1997 ◽  
Vol 60 (6) ◽  
pp. 639-643 ◽  
Author(s):  
FUENG-LIN KUO ◽  
JOHN B. CAREY ◽  
STEVEN C. RICKE

The effects were investigated of 254-nm UV radiation on populations of Salmonella typhimurium, aerobes, and molds on the shells of eggs. In the first experiment, the CFU of attached S. typhimurium cells on unwashed clean shell eggs were determined after 0, 1, 3, 5, and 7 min of UV treatment (620 μW/cm2) on both ends of the egg. All UV treatments significantly reduced S. typhimurium CFU (P < .01). UVtreatment (620 μW/cm2) in 1-min alternating light and dark cycles for 5 min (three light and two dark) was compared to 0, 3, and 5 min of UV treatment. No significant differences in microbial populations were observed among light and dark cycles and the other UV treatments. In a subsequent experiment, the same UV treatments were utilized to evaluate photoreactivation. After UV exposure, eggs were exposed to 1 h of fluorescent light or I h of darkness or cultured immediately. S. typhimurium CFU were significantly (P < .01) reduced by the UV treatments. However, no significant differences between microbial populations exposed to UV treatment and UV radiation plus photoreactivation were detected. For studies of aerobic bacteria and molds, different UV treatment times (0, 15, and 30 min) at the intensity of 620 μW/cm2 and different intensities (620, 1350, and 1720 μW/cm2) for 15 min were evaluated. Mold CFU per egg were either 0 or 1 for all UV treatments and a 99% reduction of CFU of aerobic bacteria per egg were observed for all UV treatments. It appears from these studies that UV light can significantly reduce populations of S. typhimurium, aerobes, and molds on shell eggs.


Horticulturae ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 80
Author(s):  
Triston Hooks ◽  
Joseph Masabni ◽  
Ling Sun ◽  
Genhua Niu

Blue light and ultra-violet (UV) light have been shown to influence plant growth, morphology, and quality. In this study, we investigated the effects of pre-harvest supplemental lighting using UV-A and blue (UV-A/Blue) light and red and blue (RB) light on growth and nutritional quality of lettuce grown hydroponically in two greenhouse experiments. The RB spectrum was applied pre-harvest for two days or nights, while the UV-A/Blue spectrum was applied pre-harvest for two or four days or nights. All pre-harvest supplemental lighting treatments had a same duration of 12 h with a photon flux density (PFD) of 171 μmol m−2 s−1. Results of both experiments showed that pre-harvest supplemental lighting using UV A/Blue or RB light can increase the growth and nutritional quality of lettuce grown hydroponically. The enhancement of lettuce growth and nutritional quality by the pre-harvest supplemental lighting was more effective under low daily light integral (DLI) compared to a high DLI and tended to be more effective when applied during the night, regardless of spectrum.


Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 806
Author(s):  
Ozge Cemiloglu Ulker ◽  
Onur Ulker ◽  
Salim Hiziroglu

Volatile organic compounds (VOCs) are the main source influencing the overall air quality of an environment. It is a well-known fact that coated furniture units, in the form of paints and varnishes, emit VOCs, reducing the air quality and resulting in significant health problems. Exposure time to such compounds is also an important parameter regarding their possible health effects. Such issues also have a greater influence when the exposure period is extended. The main objective of this study was to review some of the important factors for the emission of VOCs from coated furniture, from the perspective of material characteristics, as well as health concerns. Some methods for controlling VOC emissions to improve indoor air quality, from the point of view recent regulations and suggestions, are also presented in this work.


Author(s):  
Natalia V. Karimova ◽  
Michael R Alves ◽  
Man Luo ◽  
Vicki Grassian ◽  
Robert Benny Gerber

Water systems often contain complex macromolecular systems that absorb light. In marine environments, these light absorbing components are often at the air-water interface and can participate in the chemistry of...


Sign in / Sign up

Export Citation Format

Share Document