scholarly journals Nanostructured Surfaces to Promote Osteoblast Proliferation and Minimize Bacterial Adhesion on Titanium

Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4357
Author(s):  
Samira Esteves Afonso Camargo ◽  
Xinyi Xia ◽  
Chaker Fares ◽  
Fan Ren ◽  
Shu-Min Hsu ◽  
...  

The objective of this study was to investigate the potential of titanium nanotubes to promote the proliferation of human osteoblasts and to reduce monomicrobial biofilm adhesion. A secondary objective was to determine the effect of silicon carbide (SiC) on these nanostructured surfaces. Anodized titanium sheets with 100–150 nm nanotubes were either coated or not coated with SiC. After 24 h of osteoblast cultivation on the samples, cells were observed on all titanium sheets by SEM. In addition, the cytotoxicity was evaluated by CellTiter-BlueCell assay after 1, 3, and 7 days. The samples were also cultivated in culture medium with microorganisms incubated anaerobically with respective predominant periodontal bacteria viz. Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia as monoinfection at 37 °C for 30 days. The biofilm adhesion and coverage were evaluated through surface observation using Scanning Electron Microscopy (SEM). The results demonstrate that Ti nanostructured surfaces induced more cell proliferation after seven days. All groups presented no cytotoxic effects on human osteoblasts. In addition, SEM images illustrate that Ti nanostructured surfaces exhibited lower biofilm coverage compared to the reference samples. These results indicate that Ti nanotubes promoted osteoblasts proliferation and induced cell proliferation on the surface, compared with the controls. Ti nanotubes also reduced biofilm adhesion on titanium implant surfaces.

Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2739 ◽  
Author(s):  
Korbinian Benz ◽  
Andreas Schöbel ◽  
Marisa Dietz ◽  
Peter Maurer ◽  
Jochen Jackowski

The aim of this in vitro pilot study was to analyse the adhesion behaviour of human osteoblasts and fibroblasts on polyether ether ketone (PEEK) when compared with titanium surfaces in an inflammatory environment under lipopolysaccharide (LPS) incubation. Scanning electron microscopy (SEM) images of primary human osteoblasts/fibroblasts on titanium/PEEK samples were created. The gene expression of the LPS-binding protein (LBP) and the LPS receptor (toll-like receptor 4; TLR4) was measured by real-time polymerase chain reaction (PCR). Immunocytochemistry was used to obtain evidence for the distribution of LBP/TLR4 at the protein level of the extra-cellular-matrix-binding protein vinculin and the actin cytoskeleton. SEM images revealed that the osteoblasts and fibroblasts on the PEEK surfaces had adhesion characteristics comparable to those of titanium. The osteoblasts contracted under LPS incubation and a significantly increased LBP gene expression were detected. This was discernible at the protein level on all the materials. Whereas no increase of TLR4 was detected with regard to mRNA concentrations, a considerable increase in the antibody reaction was detected on all the materials. As is the case with titanium, the colonisation of human osteoblasts and fibroblasts on PEEK samples is possible under pro-inflammatory environmental conditions and the cellular inflammation behaviour towards PEEK is lower than that of titanium.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2602
Author(s):  
Aslihan Secgin-Atar ◽  
Gokce Aykol-Sahin ◽  
Necla Asli Kocak-Oztug ◽  
Funda Yalcin ◽  
Aslan Gokbuget ◽  
...  

The aim of our study was to obtain similar surface properties and elemental composition to virgin implants after debridement of contaminated titanium implant surfaces covered with debris. Erbium-doped:yttrium, aluminum, and garnet (Er:YAG) laser, erbium, chromium-doped:yttrium, scandium, gallium, and garnet (Er,Cr:YSGG) laser, curette, and ultrasonic device were applied to contaminated implant surfaces. Scanning electron microscopy (SEM) images were taken, the elemental profile of the surfaces was evaluated with energy dispersive X-ray spectroscopy (EDX), and the surface roughness was analyzed with profilometry. Twenty-eight failed implants and two virgin implants as control were included in the study. The groups were designed accordingly; titanium curette group, ultrasonic scaler with polyetheretherketone (PEEK) tip, Er: YAG very short pulse laser group (100 μs, 120 mJ/pulse 10 Hz), Er: YAG short-pulse laser group (300 μs, 120 mJ/pulse, 10 Hz), Er: YAG long-pulse laser group (600 μs, 120 mJ/pulse, 10 Hz), Er, Cr: YSGG1 laser group (1 W 10 Hz), Er, Cr: YSGG2 laser group (1.5 W, 30 Hz). In each group, four failed implants were debrided for 120 s. When SEM images and EDX findings and profilometry results were evaluated together, Er: YAG long pulse and ultrasonic groups were found to be the most effective for debridement. Furthermore, the two interventions have shown the closest topography of the sandblasted, large grit, acid-etched implant surface (SLA) as seen on virgin implants.


Oncogene ◽  
2006 ◽  
Vol 25 (50) ◽  
pp. 6648-6659 ◽  
Author(s):  
C Billottet ◽  
V L Grandage ◽  
R E Gale ◽  
A Quattropani ◽  
C Rommel ◽  
...  

2011 ◽  
Vol 14 (1) ◽  
pp. 19 ◽  
Author(s):  
Z.A. Mansurov ◽  
M. Nazhipkyzy ◽  
B.T. Lesbayev ◽  
N.G. Prikhodko ◽  
M. Auyelkhankyzy ◽  
...  

We synthesize and deposit carbon nanostructures through flame synthesis on silicon and nickel wafers at different nonpremixed flame locations to produce hydrophobic surfaces. The hydrophobicity is characterized through the contact angle for water droplets placed on the surface. The surface morphology of the nanoparticles is obtained from SEM images. The morphology and hydrohobicity of the nanostructured surfaces depends upon the deposition, which differs at various flame locations. We determine the optimum flame location for the synthesis and deposition of surface carbon nanostructures that lead to maximum hydrophobicity.


2012 ◽  
Vol 9 (4) ◽  
pp. 194-202 ◽  
Author(s):  
Sae-Young Park ◽  
Hyo-Sop Kim ◽  
Jae-Ho Kim ◽  
Jin-Hyung Shim ◽  
Mi-Jung Yun ◽  
...  

2013 ◽  
Vol 28 (1) ◽  
pp. 57-66 ◽  
Author(s):  
Kyou-Hwa Park ◽  
Jai-Young Koak ◽  
Seong-Kyun Kim ◽  
Chong-Hyun Han ◽  
Seong-Joo Heo

1983 ◽  
Vol 17 (3) ◽  
pp. 239-247 ◽  
Author(s):  
Toshihiro Miyoshi ◽  
Shigeo Ogawa ◽  
Toshinori Kanamori ◽  
Masahiro Nobuhara ◽  
Masayoshi Namba

Sign in / Sign up

Export Citation Format

Share Document