scholarly journals Development of 3D Printable Cementitious Composites with the Incorporation of Polypropylene Fibers

Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4474
Author(s):  
Jolien Van Der Putten ◽  
Rahul Attupurathu Vijayan ◽  
Geert De Schutter ◽  
Kim Van Tittelboom

Similar to conventional cast concrete, printable materials require reinforcement to counteract their low tensile strength. However, as traditional reinforcement strategies are not commonly used in 3D print applications, fiber reinforcement can serve as an alternative. This study aims to assess the influence of different polypropylene fiber lengths (3 and 6 mm, denoted as M3 and M6, respectively) and dosages (0.1 and 0.3% volume fraction) on the workability, pore structure, mechanical and shrinkage behavior of 3D printable cementitious materials. Fresh state observations revealed that the addition of a higher fiber volume decreased the workability of the material, irrespective of the fiber length as a result of the lower water film thickness (WFT). In hardened state, a marginal increase in total porosity could be observed when adding fibers to the mix composition. In addition, the flexural strength was found to increase with the addition of fibers, while no significant difference was observed in compressive strength. The increase in flexural strength was more pronounced in the case of longer-sized M6 fibers. Finally, the total drying shrinkage behavior was evaluated using mold-cast prisms. The addition of M6 fibers showed no beneficial effect in reducing total free shrinkage, while a reduction in total free shrinkage was observed when using M3 fibers.

2021 ◽  
pp. 002199832110047
Author(s):  
Mahmoud Mohamed ◽  
Siddhartha Brahma ◽  
Haibin Ning ◽  
Selvum Pillay

Fiber prestressing during matrix curing can significantly improve the mechanical properties of fiber-reinforced polymer composites. One primary reason behind this improvement is the generated compressive residual stress within the cured matrix, which impedes cracks initiation and propagation. However, the prestressing force might diminish progressively with time due to the creep of the compressed matrix and the relaxation of the tensioned fiber. As a result, the initial compressive residual stress and the acquired improvement in mechanical properties are prone to decline over time. Therefore, it is necessary to evaluate the mechanical properties of the prestressed composites as time proceeds. This study monitors the change in the tensile and flexural properties of unidirectional prestressed glass fiber reinforced epoxy composites over a period of 12 months after manufacturing. The composites were prepared using three different fiber volume fractions 25%, 30%, and 40%. The results of mechanical testing showed that the prestressed composites acquired an initial increase up to 29% in the tensile properties and up to 32% in the flexural properties compared to the non-prestressed counterparts. Throughout the 12 months of study, the initial increase in both tensile and flexural strength showed a progressive reduction. The loss ratio of the initial increase was observed to be inversely proportional to the fiber volume fraction. For the prestressed composites fabricated with 25%, 30%, and 40% fiber volume fraction, the initial increase in tensile and flexural strength dropped by 29%, 25%, and 17%, respectively and by 34%, 26%, and 21%, respectively at the end of the study. Approximately 50% of the total loss took place over the first month after the manufacture, while after the sixth month, the reduction in mechanical properties became insignificant. Tensile modulus started to show a very slight reduction after the fourth/sixth month, while the flexural modulus reduction was observed from the beginning. Although the prestressed composites displayed time-dependent losses, their long-term mechanical properties still outperformed the non-prestressed counterparts.


2021 ◽  
pp. 152808372110003
Author(s):  
M Atta ◽  
A Abu-Sinna ◽  
S Mousa ◽  
HEM Sallam ◽  
AA Abd-Elhady

The bending test is one of the most important tests that demonstrates the advantages of functional gradient (FGM) materials, thanks to the stress gradient across the specimen depth. In this research, the flexural response of functionally graded polymeric composite material (FGM) is investigated both experimentally and numerically. Fabricated by a hand lay-up manufacturing technique, the unidirectional glass fiber reinforced epoxy composite composed of ten layers is used in the present investigation. A 3-D finite element simulation is used to predict the flexural strength based on Hashin’s failure criterion. To produce ten layers of FGM beams with different patterns, the fiber volume fraction ( Vf%) ranges from 10% to 50%. A comparison between FGM beams and conventional composite beams having the same average Vf% is made. The experimental results show that the failure of the FGM beams under three points bending loading (3PB) test is initiated from the tensioned layers, and spread to the upper layer. The spreading is followed by delamination accompanied by shear failures. Finally, the FGM beams fail due to crushing in the compression zone. Furthermore, the delamination failure between the layers has a major effect on the rapidity of the final failure of the FGM beams. The present numerical results show that the gradient pattern of FGM beams is a critical parameter for improving their flexural behavior. Otherwise, Vf% of the outer layers of the FGM beams, i.e. Vf% = 30, 40, or 50%, is responsible for improving their flexural strength.


2014 ◽  
Vol 915-916 ◽  
pp. 784-787
Author(s):  
Yan Lv

Based on the mechanical properties experiment of the glass fiber reinforced concrete with 0%0.6%0.8% and 1% glass fiber volume fraction, the mechanics property such as tensile strength, compressive strength, flexural strength and flexural elasticity modulus are analyzed and compared with the plain concrete when the kinds of fiber content changes. The research results show that the effect of tensile strength and flexural strength can be improved to some extent, which also can serve as a reference or basis for further improvement and development the theory and application of the glass fiber reinforced concrete.


2019 ◽  
Vol 9 (6) ◽  
pp. 1241 ◽  
Author(s):  
Seung-Jung Lee ◽  
Doo-Yeol Yoo ◽  
Do-Young Moon

This study investigates the effects of hooked-end fiber geometry and volume fraction on the flexural behavior of concrete pedestrian decks. To achieve this, three different fiber geometries, i.e., three-dimensional (3D), four-dimensional (4D), and five-dimensional (5D), and volume fractions of 0.37%, 0.6%, and 1.0% were considered. Test results indicate that a higher number of hook ends can more effectively enhance the flexural strength and flexural strength margin at all volume fractions than a lower number, so that the order of effectiveness of hooked-end fibers on the flexural strength parameters was as follows: 5D > 4D > 3D. To satisfy the ductility index of 0.39, the amounts of 3D, 4D, and 5D hooked steel fibers should be in the range of 0.98%‒1.10%. Moreover, at a fiber volume fraction of 1.0%, only multiple cracking behaviors were observed, and the numerical results indicated that the volume fraction should be equal to 1.0% to guarantee a deflection-hardening response of pedestrian decks, regardless of the hooked-end fiber geometry. Consequently, a 1.0% by volume of hooked-end steel fiber is recommended to replace the minimum longitudinal steel rebars and guarantee a ductile flexural behavior with multiple cracks for pedestrian decks made of high-strength concrete.


2019 ◽  
Vol 28 (4) ◽  
pp. 273-284
Author(s):  
Jai Inder Preet Singh ◽  
Sehijpal Singh ◽  
Vikas Dhawan

Rising environmental concerns and depletion of petrochemical resources have resulted in an increased interest in biodegradable natural fiber-reinforced polymer composites. In this research work, jute fiber has been used as a reinforcement and polylactic acid (PLA) as the matrix material to develop jute/PLA green composites with the help of compression molding technique. The effect of fiber volume fraction ranging from 25% to 50% and curing temperature ranging from 160°C to 180°C on different samples were investigated for mechanical properties and water absorption. Results obtained from various tests indicate that with an increase in the fiber volume fraction, tensile and flexural strength increases till 30% fiber fraction, thereafter decreases with further increase in fiber content. Maximum tensile and flexural strength of jute/PLA composites was obtained with 30% fiber volume fraction at 160°C curing temperature. The trend obtained from mechanical properties is further justified through the study of surface morphology using scanning electron microscopy.


2011 ◽  
Vol 346 ◽  
pp. 30-33
Author(s):  
Hong Wei Wang

A designed experimental study has been conducted to investigate the effect of polypropylene fiber on the compressive strength and flexural properties of concrete containing silica fume, a large number of experiments have been carried out in this study. The flexural properties include flexural strength and flexural modulus of elasticity. On the basis of the experimental results of the specimens of six sets of mix proportions, the mechanism of action of polypropylene fiber on compressive strength, flexural strength and flexural modulus of elasticity has been analyzed in details. The results indicate that there is a tendency of increase in the compressive strength and flexural strength, and the flexural modulus of elasticity of concrete containing silica fume decrease gradually with the increase of fiber volume fraction.


2016 ◽  
Vol 2 (1) ◽  
pp. 13-22 ◽  
Author(s):  
Hasan Jalilifar ◽  
Fatholla Sajedi ◽  
Sadegh Kazemi

The flexural strength of conventional concrete material is known to be enhanced by incorporating a moderate volume-fraction of randomly distributed fibers. However, there is limited information on describing the influence of fiber volume-fraction on the compressive and flexural strength of recycled coarse aggregate concrete (RCA-C) material. This paper reports on experimental test results of the RCA-C material replaced with 0, 30, 50 and 100% recycled aggregate and 0, 0.5, 1 and 1.5% steel fiber volume fraction. Three-point flexural tests of notched prism specimens were completed. The mechanical properties in compression were characterized using cube specimens. Significant improvement in compressive and flexural strength of RCA-C was found as fiber content increased from 0 to 1.5%. The experimental test results of RCA-C were further evaluated to investigate the influence of fiber content on flexural toughness. According to test results, the addition of steel fibers to RCA-C material appreciably increased the flexural toughness.


Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3849 ◽  
Author(s):  
Manuel J. Chinchillas-Chinchillas ◽  
Manuel J. Pellegrini-Cervantes ◽  
Andrés Castro-Beltrán ◽  
Margarita Rodríguez-Rodríguez ◽  
Víctor M. Orozco-Carmona ◽  
...  

Currently it is necessary to find alternatives towards a sustainable construction, in order to optimize the management of natural resources. Thus, using recycled fine aggregate (RFA) is a viable recycling option for the production of new cementitious materials. In addition, the use of polymeric microfibers would cause an increase in the properties of these materials. In this work, mortars were studied with 25% of RFA and an addition of polyacrylonitrile PAN microfibers of 0.05% in cement weight. The microfibers were obtained by the electrospinning method, which had an average diameter of 1.024 µm and were separated by means of a homogenizer to be added to the mortar. Cementing materials under study were evaluated for compressive strength, flexural strength, total porosity, effective porosity and capillary absorption, resistance to water penetration, sorptivity and carbonation. The results showed that using 25% of RFA causes decreases mechanical properties and durability, but adding PAN microfibers in 0.05% caused an increase of 2.9% and 30.8% of compressive strength and flexural strength respectively (with respect to the reference sample); a decrease in total porosity of 5.8% and effective porosity of 7.4%; and significant decreases in capillary absorption (approximately 23.3%), resistance to water penetration (25%) and carbonation (14.3% after 28 days of exposure). The results showed that the use of PAN microfibers in recycled mortars allowed it to increase the mechanical properties (because they increase the tensile strength), helped to fill pores or cavities and this causes them to be mortars with greater durability. Therefore, the use of PAN microfibers as a reinforcement in recycled cementitious materials would be a viable option to increase their applications.


2011 ◽  
Vol 374-377 ◽  
pp. 1499-1506
Author(s):  
Rong Hui Zhang ◽  
Jian Li

In this study, the effect of micro-expansion high strength grouting material (EGM) and Modified polypropylene coarse fiber (M-PP fiber) on the mechanical properties of lightweight concrete are investigated. The influence of EGM and M-PP fiber on compressive strength , flexural strength and drying shrinkage of concrete are researched, and flexural fracture toughness are calculated. Test results show that the effect of EGM and M-PP fiber volume fraction (Vf) on flexural strength and fracture toughness is extremely prominent, compressive strength is only slightly enhanced, and the rate of shrinkage is obviously decreased. It is observed that the shape of the descending branch of load-deflection and the ascending branch of shrinkage-age tends towards gently with the increase of Vf. And M-PP fiber reinforced lightweight aggregate concrete is more economical.


Author(s):  
Mohamed Rahman ◽  
Abdul Aziz Jasani ◽  
Mohd Azizuddin Ibrahim

Natural fiber such as kenaf, sisal, pineapple leaf and banana are growing popular nowadays due to its favor over traditional glass fiber and inorganic material. It is a renewable resources and abundantly available in the market. The composites made of natural fiber are economical, lightweight and environmental friendly. This study works on producing a composite based on the Banana fiber reinforced epoxy resin by using the method of Vacuum Infusion and Hand Lay-up. Banana fiber will be treated with Sodium Hydroxide (NaOH) and water solution for 1 hour and then dried in the oven for 24 hours at 100°C. The composite will be produce based on different fiber volume fraction of 20% and 40% as well as different fiber length of 127mm, and 63mm. In Vacuum Infusion process, a mold made of aluminium have been manufactured according to the size of specimens of 127mm x 12.7mm x 3.2mm in dimension will be used in the preparation of specimens. The specimens of different volume fraction and fiber length produced by vacuum infusion and hand lay-up method will be mechanically tested through flexural test. The highest flexural strength is the specimen made by vacuum infusion process with 40% volume fraction and 63mm fiber length, which is 136.27MPa while for the hand lay-up process, the highest flexural strength is 80.71 with 40% volume fraction and 63mm fiber length.


Sign in / Sign up

Export Citation Format

Share Document