scholarly journals Wetting and Spreading of AgCuTi on Selective Laser-Melted Ti-6Al-4V

Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4804
Author(s):  
Lujing Hao ◽  
Jiankun Liu ◽  
Yulong Li

Selective laser melting (SLM) can be used to manufacture complex parts, however, it is difficult to make large parts due to the size limitation of the SLM equipment. In application, smaller selective laser-melted (SLMed) Ti-6Al-4V (TC4) parts can be brazed or welded to form larger components. In the brazing, AgCuTi is often used to braze TC4. However, the wettability of AgCuTi on the SLMed TC4 should be evaluated before joining the SLMed TC4 parts. As a result, wetting and spreading tests and brazing experiments should be undertaken to successfully join the SLMed TC4 parts. In this study, a LINKAM TS 1500 high-temperature hot stage was used to test the brazability of the AgCuTi on the surface of SLMed TC4. Different temperatures and dwell times were used: (i) 850 °C 900 °C and 950 °C, holding for 120 s, were used to study the temperature effects; (ii) 20 s, 120 s and 200 s were used at 850 °C to study the dwell time effects. The R~t model was used to describe the wetting and spreading process. The results of this study can provide basic data for the joining of SLMed TC4 in industry.

Author(s):  
Haiyang Fan ◽  
Yahui Liu ◽  
Shoufeng Yang

Ti–6Al–2Sn–4Zr–2Mo (Ti-6242), a near-[Formula: see text] titanium alloy explicitly designed for high-temperature applications, consists of a martensitic structure after selective laser melting (SLM). However, martensite is thermally unstable and thus adverse to the long-term service at high temperatures. Hence, understanding martensite decomposition is a high priority for seeking post-heat treatment for SLMed Ti-6242. Besides, compared to the room-temperature titanium alloys like Ti–6Al–4V, aging treatment is indispensable to high-temperature near-[Formula: see text] titanium alloys so that their microstructures and mechanical properties are pre-stabilized before working at elevated temperatures. Therefore, the aging response of the material is another concern of this study. To elaborate the two concerns, SLMed Ti-6242 was first isothermally annealed at 650[Formula: see text]C and then water-quenched to room temperature, followed by standard aging at 595[Formula: see text]C. The microstructure analysis revealed a temperature-dependent martensite decomposition, which proceeded sluggishly at [Formula: see text]C despite a long duration but rapidly transformed into lamellar [Formula: see text] above the martensite transition zone (770[Formula: see text]C). As heating to [Formula: see text]C), it produced a coarse microstructure containing new martensites formed in water quenching. The subsequent mechanical testing indicated that SLM-built Ti-6242 is excellent in terms of both room- and high-temperature tensile properties, with around 1400 MPa (UTS)[Formula: see text]5% elongation and 1150 MPa (UTS)[Formula: see text]10% elongation, respectively. However, the combination of water quenching and aging embrittled the as-built material severely.


2019 ◽  
Vol 45 (2) ◽  
pp. 2466-2473 ◽  
Author(s):  
Derek King ◽  
John Middendorf ◽  
Kathleen Cissel ◽  
Thomas Key ◽  
Carmen Carney

Materials ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 930 ◽  
Author(s):  
Martin Malý ◽  
Christian Höller ◽  
Mateusz Skalon ◽  
Benjamin Meier ◽  
Daniel Koutný ◽  
...  

The aim of this study is to observe the effect of process parameters on residual stresses and relative density of Ti6Al4V samples produced by Selective Laser Melting. The investigated parameters were hatch laser power, hatch laser velocity, border laser velocity, high-temperature preheating and time delay. Residual stresses were evaluated by the bridge curvature method and relative density by the optical method. The effect of the observed process parameters was estimated by the design of experiment and surface response methods. It was found that for an effective residual stress reduction, the high preheating temperature was the most significant parameter. High preheating temperature also increased the relative density but caused changes in the chemical composition of Ti6Al4V unmelted powder. Chemical analysis proved that after one build job with high preheating temperature, oxygen and hydrogen content exceeded the ASTM B348 limits for Grade 5 titanium.


2016 ◽  
Vol 2016 (1) ◽  
pp. 000517-000522
Author(s):  
Aarief Syed-Khaja ◽  
Christopher Kaestle ◽  
Joerg Franke

Abstract Additive manufacturing (AM) has the potential to lead significant changes in the present state-of-the-art production processes. This provides tool-free and direct manufacturing of complex geometries simultaneously integrating various functions into components. Though AM techniques are widely used in various sectors, the application into electronics production has been not yet explored. In electronics production, substrate development has high relevance due to their multi-functionality in giving the mechanical support and electrically connecting electronic components. This contribution introduces an innovative approach in the development of high-temperature substrates through additive layered manufacturing. The technique used in the investigations was selective laser melting (SLM) of copper based powder materials mainly bronze alloy and pure copper, for the generation of conductive patterns on ceramic surfaces. The process parameters for the SLM technique and the influential factors in the generation of conductive structures are discussed in detail.


2019 ◽  
Vol 813 ◽  
pp. 129-134 ◽  
Author(s):  
Andrea El Hassanin ◽  
Maurizio Troiano ◽  
Alessia Teresa Silvestri ◽  
Vincenzo Contaldi ◽  
Fabio Scherillo ◽  
...  

Metal Additive Manufacturing technologies development is increasing in a remarkable way due to their great potential concerning the production of complex parts with tailored characteristics in terms of design, material properties, usage and applications. Among all, the most widespread technologies are the Powder Bed Fusion based technologies such as Selective Laser Melting and Electron Beam Melting. However, the high surface roughness of the as-built parts still represents one of the major limitations, making necessary the adoption of post-process finishing to match the technological requirements for most of the fields of application. In this scenario, Fluidised Bed Machining represents an emerging finishing technology that could overcome some of the limitations of the most common methods, especially in terms of feasibility for the treatment of complex parts thanks to the fluid-like mobility of the abrasive material. This work deals with the preliminary tests of the Fluidised Bed Machining of additive manufactured samples using alumina as the abrasive material, investigating the effects of a high abrasive/substrate hardness ratio condition. The experiments were carried out on small plates of AlSi10Mg alloy made through Selective Laser Melting technology, built in the vertical direction with respect to the building plate. The influence of the impact angle and treatment time were investigated under bubbling fluidization conditions. Surface morphology evaluations were carried out pre and post process by means of Confocal Microscopy and Scanning Electron Microscopy (SEM). Weight loss measurements were conducted to evaluate the material removal rates as well. Results show a small influence of the specific impact angle, a slight reduction of the surface roughness and an asymmetrical effect of treatment, acting mostly on the sintered powders forming the peaks of the as-built surface.


Metals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 629
Author(s):  
Anagh Deshpande ◽  
Subrata Deb Nath ◽  
Sundar Atre ◽  
Keng Hsu

Selective laser melting (SLM) is one of the most widely used additive manufacturing technologies. Fabricating nickel-based superalloys with SLM has garnered significant interest from the industry and the research community alike due to the excellent high temperature properties and thermal stability exhibited by the alloys. Haynes-282 alloy, a γ′-phase strengthened Ni-based superalloy, has shown good high temperature mechanical properties comparable to alloys like R-41, Waspaloy, and 263 alloy but with better fabricability. A study and comparison of the effect of different heat-treatment routes on microstructure and mechanical property evolution of Haynes-282 fabricated with SLM is lacking in the literature. Hence, in this manuscript, a thorough investigation of microstructure and mechanical properties after a three-step heat treatment and hot isostatic pressing (HIP) has been conducted. In-situ heat-treatment experiments were conducted in a transmission electron microscopy (TEM) to study γ′ precipitate evolution. γ′ precipitation was found to start at 950 °C during in-situ heat-treatment. Insights from the in-situ heat-treatment were used to decide the aging heat-treatment for the alloy. The three-step heat-treatment was found to increase yield strength (YS) and ultimate tensile strength (UTS). HIP process enabled γ′ precipitation and recrystallization of grains of the as-printed samples in one single step.


Sign in / Sign up

Export Citation Format

Share Document