scholarly journals KCl Extracted from Chlorine Bypass Dust as Activator for Plain Concrete

Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6091
Author(s):  
Hongbeom Choi ◽  
Jinman Kim ◽  
Sunmi Choi ◽  
Sungsu Kim

This study demonstrated the use of KCl separated from chlorine bypass dust (CBD) as an activator for plain concrete. The separated KCl was mixed with either ground granulated blast-furnace slag (BFS) alone, or a mixture of BFS and cement. The mixed paste of separated KCl and BFS set within 24 h, and exhibited a compressive strength of 22.6 MPa after 28 d. The separated KCl, cement, and BFS mixture exhibited a more rapid setting and a higher initial activity. Further, the compressive strength at 28 d was 57.7 MPa, which was 26.2% higher than that of the mixture without the activator. Water curing of samples with added separated KCl led to the generation of hydrocalumite, or Friedel’s salt. However, this hydrocalumite was decomposed while being cured under autoclave conditions at 180 °C. Overall, KCl was an effective activator for composite materials containing cement, and resulted in superior properties compared to mineral admixtures without an activator.

2015 ◽  
Vol 1129 ◽  
pp. 607-613
Author(s):  
Hiroki Goda ◽  
Koji Harada ◽  
Shunji Tsugo ◽  
Makoto Hibino

The compressive strength and resistance to chemical attack of a fly-ash-based geopolymer, to which ground granulated blast furnace slag (B.F.S) and silica fume were added as mineral admixtures, were evaluated. The B.F.S. constituted 10% of the total powder amount in this geopolymer, which exhibited a high compressive strength. In addition, the compressive strength remained unchanged with proportional additions of silica fume to the mixture. The geopolymer exhibited, however, different resistance to sulfuric acid and sodium sulfate solutions during diffusion testing. In fact, the resistance of the B.F.S-containing mix to sulfuric acid was enhanced by the addition of silica fume and by autoclaving.


2017 ◽  
Vol 68 (6) ◽  
pp. 1182-1187
Author(s):  
Ilenuta Severin ◽  
Maria Vlad

This article presents the influence of the properties of the materials in the geopolymeric mixture, ground granulated blast furnace slag (GGBFS) + wheat straw ash (WSA) + uncalcined red mud (RMu), and ground granulated blast furnace slag + wheat straw ash + calcined red mud (RMc), over the microstructure and mechanical properties of the synthesised geopolymers. The activation solutions used were a NaOH solution with 8M concentration, and a solution realised from 50%wt NaOH and 50%wt Na2SiO3. The samples were analysed: from the microstructural point of view through SEM microscopy; the chemical composition was determined through EDX analysis; and the compressive strength tests was done for samples tested at 7 and 28 days, respectively. The SEM micrographies of the geopolymers have highlighted a complex structure and an variable compressive strength. Compressive strength varied from 24 MPa in the case of the same recipe obtained from 70% of GGBFS + 25% WSA +5% RMu, alkaline activated with NaOH 8M (7 days testing) to 85 MPa in the case of the recipe but replacing RMu with RMc with calcined red mud, alkaline activated with the 50%wt NaOH and 50%wt Na2SiO3 solution (28 days testing). This variation in the sense of the rise in compressive strength can be attributed to the difference in reactivity of the materials used in the recipes, the curing period, the geopolymers structure, and the presence of a lower or higher rate of pores, as well as the alkalinity and the nature of the activation solutions used.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 596
Author(s):  
Yasuhiro Dosho

To improve the application of low-quality aggregates in structural concrete, this study investigated the effect of multi-purpose mineral admixtures, such as fly ash and ground granulated blast-furnace slag, on the performance of concrete. Accordingly, the primary performance of low-quality recycled aggregate concrete could be improved by varying the replacement ratio of the recycled aggregate and using appropriate mineral admixtures such as fly ash and ground granulated blast-furnace slag. The results show the potential for the use of low-quality aggregate in structural concrete.


2020 ◽  
Vol 323 ◽  
pp. 01018
Author(s):  
Wei-Ting Lin ◽  
Lukáš Fiala ◽  
An Cheng ◽  
Michaela Petříková

In this study, the different proportions of co-fired fly ash and ground granulated blast-furnace slag were used to fully replace the cement as non-cement blended materials in a fixed water-cement ratio. The recycled fine aggregates were replaced with natural fine aggregates as 10%, 20%, 30%, 40% and 50%. The flowability, compressive strength, water absorption and scanning electron microscope observations were used as the engineered indices by adding different proportions of recycled fine aggregates. The test results indicated that the fluidity cannot be measured normally due to the increase in the proportion of recycled fine aggregates due to its higher absorbability. In the compressive strength test, the compressive strength decreased accordingly as the recycled fine aggregates increased due to the interface structure and the performance of recycled aggregates. The fine aggregates and other blended materials had poor cementation properties, resulting in a tendency for their compressive strength to decrease. However, the compressive strength can be controlled above 35 MPa of the green non-cement blended materials containing 20% recycled aggregates.


This paper aims to investigate the influence of alkaline activators solution i.e, Na2SiO3 / NaOH on compressive strength of geopolymer concrete mixed with Ground Granulated Blast furnace slag (GGBS) for constant molarity 8 M. The ratio of alkali to binder ratio is taken as 0.5 and the ratio of Na2SiO3 / NaOH is 2.5. The geopolymer mix is based on pervious sutdies. As per Indian standard size moulds for the cube, cylinder and prism are cast, cured and tested.The specimens were tested for fresh concrete properties such as slump cone test and hardened properties such as compressive strength for cubes, split tensile strength for cylinders and flexural strength for prism different days of curing under ambient temperature. Also, a microstructural study is done by using Scanning electron microscopy (SEM), Energy dispersive X-ray (EDX) for the tested sample. It is found from the test results that, with the aid of alumino-silicate solution, early strength is achieved by geopolymer concrete within 7 days under ambient condition due to the presence of ground granulated slag.


2015 ◽  
Vol 16 (SE) ◽  
pp. 509-517
Author(s):  
Fatemeh Sayyahi ◽  
Hamid Shirzadi

 In this study, the properties of concrete with different amounts of Ground Granulated Blast-Furnace Slag (GGBFS) has been studied. In another part, the test deals to assess the properties of concrete containing GGBFS with micro-SiO2. The results show that the slag has pozzolan properties and its use up to 20% in the concrete, has no harmful effect on concrete properties. The simultaneous use of micro-SiO2 with blast furnace slag have little effect, as well as micro-SiO2 covers the defects caused by the use of slag. The results indicate that the use of micro-SiO2 and slag has good effects on the strength of concrete up to a certain age, so that its compressive strength is increased. Water-cement ratio was 0.42 and 12.5 mm for maximum size of aggregate and cement content in concrete was 425 kg per cubic meter. Compressive strength of concrete samples was measured at ages 7, 28, 56 and 90-day and flexural and tensile strength and water absorption after 28-day and 90 days also was measured.


2018 ◽  
Vol 230 ◽  
pp. 03016 ◽  
Author(s):  
Raisa Runova ◽  
Volodymyr Gots ◽  
Igor Rudenko ◽  
Oleksandr Konstantynovskyi ◽  
Oles’ Lastivka

Functionality of mortar and concrete mixes is regulated by surfactants, which act as plasticizers. The molecular structure of these admixtures can be changed during hydration of alkali-activated cements (AAC). The objective was to determine the chemical nature of plasticizers effective for property modification of mortars and concretes based on AACs with changing content of granulated blast furnace slag from 0 to 100 %. The admixtures without ester links become more effective than polyesters when content of alkaline component increase. The admixtures effective in high alkaline medium were used in dry mixes for anchoring (consistency of mortar 150 mm by Vicat cone; 1 d tensile strength in bending / compressive strength of mortar 6.6 /30.6 MPa) and in ready-mixed concretes (consistency class changed from S1 to S3, S4 with consistency safety during 60 min; 3 d compressive strength of modified concrete was not less than the reference one without admixtures).


Sign in / Sign up

Export Citation Format

Share Document