scholarly journals Statistical Analysis and Optimisation of Data for the Design and Evaluation of the Shear Spinning Process

Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6099
Author(s):  
Sandra Puchlerska ◽  
Krzysztof Żaba ◽  
Jarosław Pyzik ◽  
Tomasz Pieja ◽  
Tomasz Trzepieciński

This work proposes a research method that is a scheme that can be universally applied in problems based on the selection of optimal parameters for metal forming processes. For this purpose, statistical data optimisation methods were used. The research was based on the analysis of the shear spinning tests performed in industrial conditions. The process of shear spinning was conducted on the components made of Inconel 625 nickel superalloy. It was necessary to select the appropriate experimental plan, which, by minimising the number of trials, allowed one to draw conclusions on the influence of process parameters on the final quality of the product and was the starting point for their optimisation. The orthogonal design is the only design for three factors at two levels, providing non-trivial and statistically significant information on the main effects and interactions for the four samples. The samples were analysed for shape and dimensions using an Atos Core 200 3D scanner. Three-dimensional scanning data allowed the influence of the technological parameters of the process on quality indicators, and thus on the subsequent optimisation of the process, to be determined. The methods used proved to be effective in the design, evaluation and verification of the process.

2019 ◽  
Vol 91 (11) ◽  
pp. 9-16
Author(s):  
Artur Czupryński

The article presents research on the development of technology and mechanical properties of a 16Mo3 steel tube overlaid with Inconel 625 nickel superalloy using robotized Plasma Powder Transferred Arc Welding (PPTAW) process. Based on the results of non-destructive, metallographic and microscopic observations, chemical composition, thickness and hardness measurements of overlays optimal technological parameters for working in elevated temperature environment were selected. The performedtest has shown the correct structure of the overlay weld without welding imperfections. The examined padding weld was characterized by a dendritic structure with primary crystals growing in the direction of heat removal. It has been stated that in the range of heat input to base material 277÷514 J/mm, the iron content in the surface zone of 1,5 mm padding weld ranges from 4 to 5,5%. od 4 do 5,5%.


BMC Surgery ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Bing Wu ◽  
Kai Song ◽  
Junyao Cheng ◽  
Pengfei Chi ◽  
Zhaohan Wang ◽  
...  

Abstract Background The imaging characteristics of sacral sacralalar-iliac (S2AI) screw trajectory in adult degenerative scoliosis (ADS) patients will be determined. Methods S2AI screw trajectories were mapped on three-dimensional computed tomography (3DCT) reconstructions of 40 ADS patients. The starting point, placement plane, screw template, and a circle centered at the lowest point of the ilium inner cortex were set on these images. A tangent line from the starting point to the outer diameter of the circle was selected as the axis of the screw trajectory. The related parameters in different populations were analyzed and compared. Results The trajectory length of S2AI screws in ADS patients was 12.00 ± 0.99 cm, the lateral angle was 41.24 ± 3.92°, the caudal angle was 27.73 ± 6.45°, the distance from the axis of the screw trajectory to the iliosciatic notch was 1.05 ± 0.81 cm, the distance from the axis of the screw trajectory to the upper edge of the acetabulum was 1.85 ± 0.33 cm, and the iliac width was 2.12 ± 1.65 cm. Compared with females, the lateral angle of male ADS patients was decreased, but the trajectory length was increased (P < 0.05). Compared to patients without ADS in previous studies, the lateral angle of male patients was larger, the lateral angle of female patients was increased, and the caudal angle was decreased (P < 0.05). Conclusions There is an ideal trajectory of S2AI screws in ADS patients. A different direction should be noticed in the placement of S2AI screws, especially in female patients.


Open Physics ◽  
2021 ◽  
Vol 19 (1) ◽  
pp. 215-223
Author(s):  
Hao Huang ◽  
Qiao Deng ◽  
Hui Zhang

Abstract The packer is one of the most important tools in deep-water perforation combined well testing, and its safety directly determines the success of perforation test operations. The study of dynamic perforating pressure on the packer is one of the key technical problems in the production of deep-water wells. However, there are few studies on the safety of packers with shock loads. In this article, the three-dimensional finite element models of downhole perforation have been established, and a series of numerical simulations are carried out by using orthogonal design. The relationship between the perforating peak pressure on the packer with the factors such as perforating charge quantity, wellbore pressure, perforating explosion volume, formation pressure, and elastic modulus is established. Meanwhile, the database is established based on the results of numerical simulation, and the calculation model of peak pressure on the packer during perforating is obtained by considering the reflection and transmission of shock waves on the packer. The results of this study have been applied in the field case of deep-water well, and the safety optimization program for deep-water downhole perforation safety has been put forward. This study provides important theoretical guidance for the safety of the packer during deep-water perforating.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Joaquim Gomis ◽  
Euihun Joung ◽  
Axel Kleinschmidt ◽  
Karapet Mkrtchyan

Abstract We construct a generalisation of the three-dimensional Poincaré algebra that also includes a colour symmetry factor. This algebra can be used to define coloured Poincaré gravity in three space-time dimensions as well as to study generalisations of massive and massless free particle models. We present various such generalised particle models that differ in which orbits of the coloured Poincaré symmetry are described. Our approach can be seen as a stepping stone towards the description of particles interacting with a non-abelian background field or as a starting point for a worldline formulation of an associated quantum field theory.


2004 ◽  
Vol 822 ◽  
Author(s):  
A. Morata ◽  
A. Tarancón ◽  
G. Dezanneau ◽  
F. Peiró ◽  
J. R. Morante

AbstractIn the present work, the screen printing technique has been used to deposit thick films of Zr0.84Y016O1.92 (8YSZ). In order to control the final porosity in view of a specific application (SOFCs or gas sensor), an experimental design based on analysis of variances (ANOVA) has been carried out. From this, we were able to determine the influence of several technological parameters on films porosity and grain size. The films obtained have been analysed with both Scanning Electron Microscopy (SEM) and Focused Ion Beam (FIB) combined with SEM. We show that only the combination of experimental design and advanced observation technique such as Focused Ion Beam allowed us to extract significant information for the improvement of the deposition process.


2006 ◽  
Vol 95 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Takayuki Takei ◽  
Shinji Sakai ◽  
Tsutomu Ono ◽  
Hiroyuki Ijima ◽  
Koei Kawakami

Author(s):  
Duane W. Storti ◽  
Debasish Dutta

Abstract We consider the path planning problem for a spherical object moving through a three-dimensional environment composed of spherical obstacles. Given a starting point and a terminal or target point, we wish to determine a collision free path from start to target for the moving sphere. We define an interference index to count the number of configuration space obstacles whose surfaces interfere simultaneously. In this paper, we present algorithms for navigating the sphere when the interference index is ≤ 2. While a global calculation is necessary to characterize the environment as a whole, only local knowledge is needed for path construction.


2018 ◽  
Vol 35 (2) ◽  
pp. e2750 ◽  
Author(s):  
Ahmed A. Ahmed ◽  
CJ Luo ◽  
Sandra Perez‐Garrido ◽  
Connor R. Browse ◽  
Christopher Thrasivoulou ◽  
...  

2019 ◽  
Vol 141 (9) ◽  
Author(s):  
J. M. Fernández Oro ◽  
J. González ◽  
R. Barrio Perotti ◽  
M. Galdo Vega

In this paper, a deterministic stress decomposition is applied over the numerical three-dimensional flow solution available for a single volute centrifugal pump. The numerical model has proven in previous publications its robustness to obtain the impeller to volute-tongue flow interaction, and it is now used as starting point for the current research. The main objective has been oriented toward a detailed analysis of the lack of uniformity in the flow that the volute tongue promotes on the blade-to-blade axisymmetric pattern. Through this analysis, the fluctuation field may be retrieved and main interaction sources have been pinpointed. The results obtained with the deterministic analysis become of paramount interest to understand the different flow features found in a typical centrifugal pump as a function of the flow rate. Moreover, this postprocessing tool provides an economic and easy procedure for designers to compare the different deterministic terms, also giving relevant information on the unresolved turbulence intensity scales. Complementarily, a way to model the turbulent effects in a systematic way is also presented, comparing their impact on the performance with respect to deterministic sources in a useful framework, that may be applied for similar kinds of pumps.


Sign in / Sign up

Export Citation Format

Share Document