scholarly journals Influence of Asphalt Emulsion Inclusion on Fly Ash/Hydrated Lime Alkali-Activated Material

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7017
Author(s):  
Thanon Bualuang ◽  
Peerapong Jitsangiam ◽  
Teewara Suwan ◽  
Ubolluk Rattanasak ◽  
Weerachart Tangchirapat ◽  
...  

Supplementary cementitious materials have been widely used to reduce the greenhouse gas emissions caused by ordinary Portland cement (OPC), including in the construction of road bases. In addition, the use of OPC in road base stabilization is inefficient due to its moisture sensitivity and lack of flexibility. Therefore, this study investigates the effect of hybrid alkali-activated materials (H-AAM) on flexibility and water prevention when used as binders while proposing a new and sustainable material. A cationic asphalt emulsion (CAE) was applied to increase this cementless material’s resistance to moisture damage and flexibility. The physical properties and structural formation of this H-AAM, consisting of fly ash, hydrated lime, and sodium hydroxide, were examined. The results revealed that the addition of CAE decreased the material’s mechanical strength due to its hindrance of pozzolanic reactions and alkali activations. This study revealed decreases in the cementitious product’s peak in the x-ray diffraction analysis (XRD) tests and the number of tetrahedrons detected in the Fourier transform infrared spectroscopy analysis (FTIR) tests. The scanning electron microscope (SEM) images showed some signs of asphalt films surrounding hybrid alkali-activated particles and even some unreacted FA particles, indicating incomplete chemical reactions in the study material’s matrix. However, the H-AAM was still able to meet the minimum road base strength requirement of 1.72 MPa. Furthermore, the toughness and flexibility of the H-AAM were enhanced by CAE. Notably, adding 10% and 20% CAE by weight to the hybrid alkali-activated binder produced a significant advantage in terms of water absorption, which can be explained by its influence on the material’s consolidation of its matrices, resulting in significant void reductions. Hence, the outcomes of this study might reveal an opportunity for developing a new stabilizing agent for road bases with water-prevention properties and flexibility that remains faithful to the green construction material concept.

2012 ◽  
Vol 602-604 ◽  
pp. 980-984
Author(s):  
Dong Mei Chen ◽  
Ri Hua Zhang ◽  
Zhan Guo Zhao

At present, cement stabilization and sand are mainly used as Chinese road bases. Portland cement which causes shrinkage crack of road base can’t be suitable for construction requirements. One kind of new type cementitious materials of road base was developed to substitute for Portland cement by the construction requirements that the fly ash is the main raw materials. This product is not only suitable for construction requirements, but also reduces crack of road base for its suitable strength and micro expansive.


2021 ◽  
Vol 5 (12) ◽  
pp. 315
Author(s):  
Dhruv Sood ◽  
Khandaker M. A. Hossain

Alkali-activated binders (AABs) are developed using a dry mixing method under ambient curing incorporating powder-form reagents/activators and industrial waste-based supplementary cementitious materials (SCMs) as precursors. The effects of binary and ternary combinations/proportions of SCMs, two types of powder-form reagents, fundamental chemical ratios (SiO2/Al2O3, Na2O/SiO2, CaO/SiO2, and Na2O/Al2O3), and incorporation of polyvinyl alcohol (PVA) fibers on fresh state and hardened characteristics of 16 AABs were investigated to assess their performance for finding suitable mix compositions. The mix composed of ternary SCM combination (25% fly-ash class C, 35% fly-ash class F, and 40% ground granulated blast furnace slag) with multi-component reagent combination (calcium hydroxide and sodium metasilicate = 1:2.5) was found to be the most optimum binder considering all properties with a 56 day compressive strength of 54 MPa. The addition of 2% v/v PVA fibers to binder compositions did not significantly impact the compressive strengths. However, it facilitated mitigating shrinkage/expansion strains through micro-confinement in both binary and ternary binders. This research bolsters the feasibility of producing ambient cured powder-based cement-free binders and fiber-reinforced, strain-hardening composites incorporating binary/ternary combinations of SCMs with desired fresh and hardened properties.


2020 ◽  
Vol 71 (7) ◽  
pp. 775-788
Author(s):  
Quyet Truong Van ◽  
Sang Nguyen Thanh

The utilisation of supplementary cementitious materials (SCMs) is widespread in the concrete industry because of the performance benefits and economic. Ground granulated blast furnace slag (GGBFS) and fly ash (FA) have been used as the SCMs in concrete for reducing the weight of cement and improving durability properties. In this study, GGBFS at different cement replacement ratios of 0%, 20%, 40% and 60% by weight were used in fine-grained concrete. The ternary binders containing GGBFS and FA at cement replacement ratio of 60% by weight have also evaluated. Flexural and compressive strength test, rapid chloride permeability test and under-water abrasion test were performed. Experimental results show that the increase in concrete strength with GGBFS contents from 20% to 40% but at a higher period of maturity (56 days and more). The chloride permeability the under-water abrasion reduced with the increasing cement replacement by GGBFS or a combination of GGBFS and FA


Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3467
Author(s):  
Ankit Kothari ◽  
Karin Habermehl-Cwirzen ◽  
Hans Hedlund ◽  
Andrzej Cwirzen

Most of the currently used concretes are based on ordinary Portland cement (OPC) which results in a high carbon dioxide footprint and thus has a negative environmental impact. Replacing OPCs, partially or fully by ecological binders, i.e., supplementary cementitious materials (SCMs) or alternative binders, aims to decrease the carbon dioxide footprint. Both solutions introduced a number of technological problems, including their performance, when exposed to low, subfreezing temperatures during casting operations and the hardening stage. This review indicates that the present knowledge enables the production of OPC-based concretes at temperatures as low as −10 °C, without the need of any additional measures such as, e.g., heating. Conversely, composite cements containing SCMs or alkali-activated binders (AACs) showed mixed performances, ranging from inferior to superior in comparison with OPC. Most concretes based on composite cements require pre/post heat curing or only a short exposure to sub-zero temperatures. At the same time, certain alkali-activated systems performed very well even at −20 °C without the need for additional curing. Chemical admixtures developed for OPC do not always perform well in other binder systems. This review showed that there is only a limited knowledge on how chemical admixtures work in ecological concretes at low temperatures and how to accelerate the hydration rate of composite cements containing high amounts of SCMs or AACs, when these are cured at subfreezing temperatures.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 475
Author(s):  
Ana María Moreno de los Reyes ◽  
José Antonio Suárez-Navarro ◽  
Maria del Mar Alonso ◽  
Catalina Gascó ◽  
Isabel Sobrados ◽  
...  

Supplementary cementitious materials (SCMs) in industrial waste and by-products are routinely used to mitigate the adverse environmental effects of, and lower the energy consumption associated with, ordinary Portland cement (OPC) manufacture. Many such SCMs, such as type F coal fly ash (FA), are naturally occurring radioactive materials (NORMs). 226Ra, 232Th and 40K radionuclide activity concentration, information needed to determine what is known as the gamma-ray activity concentration index (ACI), is normally collected from ground cement samples. The present study aims to validate a new method for calculating the ACI from measurements made on unground 5 cm cubic specimens. Mechanical, mineralogical and radiological characterisation of 28-day OPC + FA pastes (bearing up to 30 wt % FA) were characterised to determine their mechanical, mineralogical and radiological properties. The activity concentrations found for 226Ra, 212Pb, 232Th and 40K in hardened, intact 5 cm cubic specimens were also statistically equal to the theoretically calculated values and to the same materials when ground to a powder. These findings consequently validated the new method. The possibility of determining the activity concentrations needed to establish the ACI for cement-based materials on unground samples introduces a new field of radiological research on actual cement, mortar and concrete materials.


2019 ◽  
Vol 4 ◽  
pp. 9-15
Author(s):  
Md Shamsuddoha ◽  
Götz Hüsken ◽  
Wolfram Schmidt ◽  
Hans-Carsten Kühne ◽  
Matthias Baeßler

Grouts have numerous applications in construction industry such as joint sealing, structural repair, and connections in precast elements. They are particularly favoured in rehabilitation of structures due to penetrability and convenience of application. Grouts for repair applications typically require high-performance properties such as rapid strength development and superior shrinkage characteristics. Sometimes industrial by-products referred as supplementary cementitious materials (SCM) are used with neat cement due to their capabilities to provide binding properties at delayed stage. Micro silica, fly ash and metakaolin are such SCMs, those can modify and improve properties of cement products. This study aims at investigating long-term mass loss and linear shrinkage along with long-term compressive and flexural strength for grouts produced from ultrafine cement and SCMs. A series of mixtures were formulated to observe the effect of SCMs on these grout properties. Properties were determined after 365 days of curing at 23oC and 55% relative humidity. The effect of SCMs on the properties are characterised by statistical models. Response surfaces were constructed to quantify these properties in relation to SCMs replacement. The results suggested that shrinkage was reduced by metakaolin, while micro silica and fly ash had positive effects on compressive and flexural strength, respectively.


2016 ◽  
Vol 711 ◽  
pp. 21-28
Author(s):  
Francisco J. Presuel-Moreno

The performance with regard to chloride penetration of specimens made with three base compositions (supplementary cementitious materials: 20% fly ash, 20% fly ash + 8% silica fume, and 50% slag replacement by weight of cement), and water-to-cementitious ratios of 0.35, 0.41, or 0.47 were investigated here. In this investigation, laboratory experiments were carried out to study the correlation between electrical resistivity and non-steady state chloride ion migration coefficients (Dnssm) of concrete. NT Build 492 was used to determine chloride migration coefficients. Rapid migration tests and resistivity measurements were performed several times over two years, and the non-steady state migration coefficient (Dnssm) vs. resistivity values were correlated. Experimental results show that a good correlation was found between electrical resistivity and Dnssm. Based on the relationships developed from this investigation, it appears that the correlations are age and composition dependent.


2019 ◽  
Vol 292 ◽  
pp. 102-107 ◽  
Author(s):  
Josef Fládr ◽  
Petr Bílý ◽  
Karel Šeps ◽  
Roman Chylík ◽  
Vladimír Hrbek

High-performance concrete is a very specific type of concrete. Its production is sensitive to both the quality of compounds used and the order of addition of particular compounds during the homogenization process. The mechanical properties were observed for four dosing procedures of each of the three tested concrete mixtures. The four dosing procedures were identical for the three mixes. The three mixes varied only in the type of supplementary cementitious material used and in water content. The water content difference was caused by variable k-value of particular additives. The water-to-binder ratio was kept constant for all the concretes. The additives used were metakaolin, fly ash and microsilica. The comparison of particular dosing procedures was carried out on the values of basic mechanical properties of concrete. The paper compares compressive strength and depth of penetration of water under pressure. Besides the comparsion of macro-mechanical properties, the effect of microsilica and fly ash additives on micro-mechanical properties was observed with the use of scanning electron microscopy (SEM) and nanoindentation data analysis. Nanoindentation was used to determine the thickness and strength of interfacial transition zone (ITZ) for different sequence of addition of cement, additive and aggregate. The thickness obtained by nanoindentation was further investigated by SEM EDS line scanning.


Author(s):  
W. Micah Hale ◽  
Thomas D. Bush ◽  
Bruce W. Russell ◽  
Seamus F. Freyne

Often, concrete is not mixed or placed under ideal conditions. Particularly in the winter or the summer months, the temperature of fresh concrete is quite different from that of concrete mixed under laboratory conditions. This paper examines the influence of supplementary cementitious materials on the strength development (and other hardened properties) of concrete subjected to different curing regimens. The supplementary cementitious materials used in the research program were ground granulated blast furnace slag (GGBFS), fly ash, and a combination of both materials. The three curing regimens used were hot weather curing, standard curing, and cold weather curing. Under the conditions tested, the results show that the addition of GGBFS at a relatively low replacement rate can improve the hardened properties for each curing regimen. This improvement was noticeable not only at later ages but also at early ages. Mixtures that contained both materials (GGBFS and fly ash) performed as well as and, in most cases, better than mixtures that contained only portland cement in all curing regimens.


Sign in / Sign up

Export Citation Format

Share Document