scholarly journals Investigation of Polyetherimide Melt-Extruded Fibers Modified by Carbon Nanoparticles

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7251
Author(s):  
Elena Ivan’kova ◽  
Gleb Vaganov ◽  
Andrey Didenko ◽  
Elena Popova ◽  
Vladimir Elokhovskiy ◽  
...  

The fibers based on thermoplastic partially crystalline polyetherimide R-BAPB modified by vapor grown carbon nanofibers (VGCF) were prepared by melt extrusion, exposed to orientational drawing, and crystallized. All of the samples were examined by scanning electron microscopy, X-ray scattering, and differential scanning calorimetry to study how the carbon nanofiller influences on the internal structure and crystallization behavior of the obtained R-BAPB fibers. The mechanical properties of the composite R-BAPB fibers were also determined. It was found that VGCF nanoparticles introduced into R-BAPB polyimide can act as a nucleating agent that leads, in turn, to significant changes in the composite fibers morphology as well as thermal and mechanical characteristics. VGCF are able to improve an orientation degree of the R-BAPB macromolecules along the fiber direction, accelerate crystallization rate of the polymer, and enhance the fiber stability during crystallization process.

Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2488
Author(s):  
Yuanyuan Dou ◽  
Xinyu Mu ◽  
Yuting Chen ◽  
Zhenbo Ning ◽  
Zhihua Gan ◽  
...  

Poly(ester amide)s have aroused extensive research interest due to the combination of the degradability of polyester and the higher mechanical properties of polyamide. In this work, a series of poly(ε-caprolactam-co-ε-caprolactone) (P(CLA-co-CLO)) copolymers with different compositions were synthesized by anionic copolymerization. The structure, crystallization behavior, water absorption, and biodegradation behavior of these copolymers were investigated by means of nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR), differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), and polarized optical micrographs (POM). The results indicated that the composition of P(CLA-co-CLO) copolymers can be adjusted by the molar feed ratio. The PCL blocks decreased the crystallization rate of PA6 blocks but had little effect on the melting behavior of PA6, while the crystallized PA6 acted as a heterogeneous nucleating agent and greatly improved the crystallization rate of PCL. Moreover, the introduction of PCL blocks greatly reduced the water absorption of P(CLA-co-CLO) copolymers and endow them a certain degree of degradability.


e-Polymers ◽  
2013 ◽  
Vol 13 (1) ◽  
Author(s):  
Matko Erceg ◽  
Dražan Jozić

Abstract Poly(3-hydroxybutyrate)/Cloisite25A (PHB/25A) nanocomposites were prepared by solution-intercalation method. The intercalation of PHB chains between the layers of Cloisite25A was observed by X-ray diffraction (XRD). Differential scanning calorimetry (DSC) and non-isothermal thermogravimetry (TG) analysis were performed to study the thermal properties, crystallization and the thermal degradation of the prepared nanocomposites. DSC analysis indicates that Cloisite25A acts as a nucleating agent and increases the crystallization rate of PHB, but due to intercalation reduces its overall degree of crystallinity. TG analysis shows that addition of Cloisite25A enhances the thermal stability of PHB.


2014 ◽  
Vol 34 (1) ◽  
pp. 53-58 ◽  
Author(s):  
Yongxian Zhao ◽  
Junyi Chen ◽  
Lei Han ◽  
Le Zhao

Abstract The nonisothermal crystallization behaviors of virgin isotactic polybutene-1 (iPB-1) and iPBn (iPB-1 containing a nucleating agent that owns acid amides structure; iPB/Mult920=100/0.5, mass ratio) were studied by means of differential scanning calorimetry (DSC). Modified Avrami theories (Ozawa method) and Mo method were used to analyze the DSC date. The results show that both methods are suitable to describe the crystallization process of iPB-1 and iPBn. Addition of 0.5% (mass ratio) nucleating agent can give rise to the nucleation effect, which increases the crystallization temperature (Tc) and the rate of crystallization of iPB-1, decreases the activation energy of crystallization (ΔE), and increases the crystallization rate of iPB-1 under the actual conditions.


2020 ◽  
Vol 856 ◽  
pp. 303-308
Author(s):  
Suttinun Phongtamrug ◽  
Sirisart Ouajai

Poly(lactic acid) (PLA) is a potential biodegradable polymer to replace petroleum-based plastic, however, its main drawback is brittleness because of slow crystallization rate. To overcome this limitation, compounding with some additives is the most chosen choice due to easy and effective preparation. In this study, an epoxidized soybean oil (ESO) and a microcrystalline cellulose (MCC) were applied as a plasticizer and a nucleating agent, respectively. The PLA was compounded with ESO and MCC by using a twin-screw extruder. The product sheets were prepared by using a chill-roll cast film extruder. Change of thermal property after adding ESO and MCC was investigated by a differential scanning calorimeter. Mechanical property of the prepared sheet was carried out by using a universal testing machine in a tensile mode. Microstructure of the sheets was also studied by wide angle X-ray diffraction (WAXD) and small angle X-ray scattering (SAXS) techniques. The results showed that ESO assisted plasticization while the MCC induced crystallization of PLA. Also, ESO and MCC eased flowability and alignment of PLA microstructure in machine direction.


Minerals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 14
Author(s):  
Jiunn-Jer Hwang ◽  
Su-Mei Huang ◽  
Wen-Yang Lin ◽  
Hsin-Jiant Liu ◽  
Cheng-Chan Chuang ◽  
...  

This study makes use of polycondensation to produce poly (L-lactic acid)-(polyethylene glycols), a biodegradable copolymer, then puts it with organically modified montmorillonite (o-MMT) going through an intercalation process to produce a series of nanocomposites of PLLA-PEG/o-MMT. The exfoliation and intercalation of the montmorillonite-layered structure could be found through X-ray diffraction and transmission electron microscopy. The lower the molecular weight of poly (ethylene glycol), the more obvious the exfoliation and dispersion. The nanocomposites were investigated under non-isothermal crystallization and isothermal crystallization separately via differential scanning calorimetry (DSC). After the adding of o-MMT to PLLA-PEG copolymers, it was found that the PLLA-PEG nanocomposites crystallized slowly and the crystallization peak tended to become broader during the non-isothermal crystallization process. Furthermore, the thermal curve of the non-isothermal melt crystallization process of PLLA-PEG copolymers with different proportions of o-MMT showed that the melting point decreased gradually with the increase of o-MMT content. In the measurement of isothermal crystallization, increasing the o-MMT of the PLLA-PEG copolymers would increase the t1/2 (crystallization half time) for crystallization and decrease the value of ΔHc. However, the present study results suggest that adding o-MMT could affect the crystallization rate of PLLA-PEG copolymers. The o-MMT silicate layer was uniformly dispersed in the PLLA-PEG copolymers, forming a nucleating agent. The crystallization rate and the regularity of the crystals changed with the increase of the o-MMT content, which further affected the crystallization enthalpies.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3133
Author(s):  
Eider Matxinandiarena ◽  
Agurtzane Múgica ◽  
Manuela Zubitur ◽  
Viko Ladelta ◽  
George Zapsas ◽  
...  

The morphology and crystallization behavior of two triblock terpolymers of polymethylene, equivalent to polyethylene (PE), poly (ethylene oxide) (PEO), and poly (ε-caprolactone) (PCL) are studied: PE227.1-b-PEO4615.1-b-PCL3210.4 (T1) and PE379.5-b-PEO348.8-b-PCL297.6 (T2) (superscripts give number average molecular weights in kg/mol and subscripts composition in wt %). The three blocks are potentially crystallizable, and the triple crystalline nature of the samples is investigated. Polyhomologation (C1 polymerization), ring-opening polymerization, and catalyst-switch strategies were combined to synthesize the triblock terpolymers. In addition, the corresponding PE-b-PEO diblock copolymers and PE homopolymers were also analyzed. The crystallization sequence of the blocks was determined via three independent but complementary techniques: differential scanning calorimetry (DSC), in situ SAXS/WAXS (small angle X-ray scattering/wide angle X-ray scattering), and polarized light optical microscopy (PLOM). The two terpolymers (T1 and T2) are weakly phase segregated in the melt according to SAXS. DSC and WAXS results demonstrate that in both triblock terpolymers the crystallization process starts with the PE block, continues with the PCL block, and ends with the PEO block. Hence triple crystalline materials are obtained. The crystallization of the PCL and the PEO block is coincident (i.e., it overlaps); however, WAXS and PLOM experiments can identify both transitions. In addition, PLOM shows a spherulitic morphology for the PE homopolymer and the T1 precursor diblock copolymer, while the other systems appear as non-spherulitic or microspherulitic at the last stage of the crystallization process. The complicated crystallization of tricrystalline triblock terpolymers can only be fully grasped when DSC, WAXS, and PLOM experiments are combined. This knowledge is fundamental to tailor the properties of these complex but fascinating materials.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Fausta Loffredo ◽  
Loredana Tammaro ◽  
Tiziana Di Luccio ◽  
Carmela Borriello ◽  
Fulvia Villani ◽  
...  

AbstractTungsten disulfide (WS2) nanotubes (NTs) are examined here as a filler for polylactide (PLA) for their ability to accelerate PLA crystallization and for their promising biocompatibility in relevant to biomedical applications of PLA-WS2 nanocomposites. In this work, we have studied the structural and thermal properties of PLA-WS2 nanocomposite films varying the concentration of WS2 NTs from 0 (neat PLA) to 0.6 wt%. The films were uniaxially drawn at 90 °C and annealed at the same temperature for 3 and 10 min. Using wide angle x-ray scattering, Raman spectroscopy and differential scanning calorimetry, we probed the effects of WS2 NT addition on the structure of the PLA films at various stages of processing (unstretched, stretching, annealing). We found that 0.6 wt% of WS2 induces the same level of crystallinity in as stretched PLA-WS2 as annealing in neat PLA for 10 min. These data provide useful insights into the role of WS2 NTs on the structural evolution of PLA-WS2 composites under uniaxial deformation, and extend their applicability to situations where fine tuning of PLA crystallinity is desirable.


2009 ◽  
Vol 24 (1) ◽  
pp. 156-163 ◽  
Author(s):  
Rabkwan Chuealee ◽  
Timothy S. Wiedmann ◽  
Teerapol Srichana

Sodium cholesteryl carbonate ester (SCC) was synthesized, and its phase behavior was studied. The chemical structure was assessed by solid-state infrared spectroscopy based on vibration analysis. The wave number at 1705 and 1276 cm−1 corresponds to a carbonyl carbonate and O–C–O stretching of SCC, respectively. Molecular structure of SCC was further investigated with 1H and 13C NMR spectroscopy. The chemical shift, for the carbonyl carbonate resonance appeared at 155.5 ppm. A molecular mass of SCC was at m/z of 452. Differential scanning calorimetry (DSC), video-enhanced microscopy (VEM) together with polarized light microscopy, and small-angle x-ray scattering (SAXS) were used to characterize the phase behavior as a function of temperature of SCC. Liquid crystalline phase was formed with SCC. Based on the thermal properties and x-ray diffraction, it appears that SCC forms a structure analogous to the type II monolayer structure observed with cholesterol esters.


Sign in / Sign up

Export Citation Format

Share Document