scholarly journals CuZn and ZnO Nanoflowers as Nano-Fungicides against Botrytis cinerea and Sclerotinia sclerotiorum: Phytoprotection, Translocation, and Impact after Foliar Application

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7600
Author(s):  
Panagiota Tryfon ◽  
Nathalie N. Kamou ◽  
Stefanos Mourdikoudis ◽  
Katerina Karamanoli ◽  
Urania Menkissoglu-Spiroudi ◽  
...  

Inorganic nanoparticles (INPs) have dynamically emerged in plant protection. The uptake of INPs by plants mostly depends on the size, chemical composition, morphology, and the type of coating on their surface. Herein, hybrid ensembles of glycol-coated bimetallic CuZn and ZnO nanoparticles (NPs) have been solvothermally synthesized in the presence of DEG and PEG, physicochemically characterized, and tested as nano-fungicides. Particularly, nanoflowers (NFs) of CuZn@DEG and ZnO@PEG have been isolated with crystallite sizes 40 and 15 nm, respectively. Organic coating DEG and PEG (23% and 63%, respectively) was found to protect the NFs formation effectively. The CuZn@DEG and ZnO@PEG NFs revealed a growth inhibition of phytopathogenic fungi Botrytis cinerea and Sclerotinia sclerotiorum in a dose-dependent manner with CuZn@DEG NFs being more efficient against both fungi with EC50 values of 418 and 311 μg/mL respectively. Lettuce (Lactuca sativa) plants inoculated with S. sclerotiorum were treated with the NFs, and their antifungal effect was evaluated based on a disease index. Plants sprayed with ZnO@PEG NFs showed a relatively higher net photosynthetic (4.70 μmol CO2 m−2s−1) and quantum yield rate (0.72) than with CuZn@DEG NFs (3.00 μmol CO2 m−2s−1 and 0.68). Furthermore, the penetration of Alizarin Red S-labeled NFs in plants was investigated. The translocation from leaves to roots through the stem was evident, while ZnO@PEG NFs were mainly trapped on the leaves. In all cases, no phytotoxicity was observed in the lettuce plants after treatment with the NFs.

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Austein G. McLoughlin ◽  
Nick Wytinck ◽  
Philip L. Walker ◽  
Ian J. Girard ◽  
Khalid Y. Rashid ◽  
...  

Author(s):  
E. Punithalingam

Abstract A description is provided for Coniothyrium minitans. Information is included on the disease caused by the organism, its transmission, geographical distribution, and hosts. HOSTS: Sclerotinia sclerotiorum, S. trifoliorum and, under laboratory conditions, can attack sclerotia of Botrytis cinerea, B. fabae, B. narcissicola, Sclerotinia minor and Sclerotium cepivorum. DISEASE: Hyperparasite of sclerotia of phytopathogenic fungi such as Sclerotinia sclerotiorum and S. trifoliorum (55, 4614, 4972). GEOGRAPHICAL DISTRIBUTION: Australasia & Oceania (Australia, New Zealand); Europe (Britain, Finland, East Germany, Hungary, Poland); North America (Canada, USA). TRANSMISSION: By conidia and mycelia dispersed in the soil from disintegrating infected sclerotia which are covered with numerous pycnidia releasing abundant conidia. It has also been suggested that disintegrating infected sclerotia could be dispersed with the mycoparasite by fungus gnats (Mycetophilidiae) (Turner & Tribe, 1976).


Plant Disease ◽  
2018 ◽  
Vol 102 (6) ◽  
pp. 1165-1170 ◽  
Author(s):  
Xiaoming Lu ◽  
Shun He ◽  
Hongju Ma ◽  
Jianhong Li ◽  
Fuxing Zhu

Hormetic effects of fungicides are highly relevant to fungicide applications and management of plant-pathogenic fungi. Preconditioning (i.e., early exposure to relatively low doses of a toxicant) is a special form of hormesis, and fungicide preconditioning of phytopathogenic fungi is inevitable in the field. The present study showed that spraying the demethylation inhibitor (DMI) fungicide flusilazole at 0.1 µg/ml had stimulatory effects on the virulence of Sclerotinia sclerotiorum inoculated at 1 and 24 h after spraying. Flusilazole sprayed at 10 µg/ml showed inhibitory effects on the virulence of S. sclerotiorum inoculated during the first 3 days after spraying. Inoculations on the 5th, 7th, and 10th day after spraying did not show any significant inhibitory or stimulatory effects on the virulence. After growing for 2 days on potato dextrose agar (PDA) amended with flusilazole at a dose range from 0.0005 to 0.25 µg/ml as preconditioning treatments, mycelia were transferred onto PDA without fungicide and subsequent mycelial growth was slower than the nonpreconditioned control. However, after the preconditioned colonies were transferred onto PDA supplemented with flusilazole at 0.2 µg/ml, percent stimulations of mycelia growth compared with the control had a parabolic shape across the preconditioning flusilazole concentration range. Similarly, the mycelial growth of the preconditioned mycelial plugs on PDA amended with other DMI fungicides (prochloraz or tebuconazole) also showed a typical hormetic response, whereas mycelial growth on PDA amended with carbendazim or dimethachlone was inhibited in a dose-dependent manner. Preconditioning S. sclerotiorum with flusilazole on rapeseed plants elicited virulence stimulations in a dose-dependent manner similar to those on mycelial growth on PDA. After disease lesions developed on rapeseed leaves sprayed with flusilazole as the preconditioning treatment were inoculated onto rapeseed plants, virulence was inhibited on leaves without fungicide or sprayed with carbendazim or dimethachlone compared with the nonpreconditioned control, whereas virulence was stimulated on leaves sprayed with flusilazole, prochloraz, or tebuconazole, and the maximum percent stimulation was 10.2%. These results will advance our understanding of hormetic effects of fungicides and of preconditioning hormesis in particular.


2020 ◽  
pp. 16-19
Author(s):  
Е.В. Янченко

Цель исследований – дать оценку сохраняемости и болезнеустойчивости современных сортов и гибридов моркови столовой и определить корреляционные зависимости влияния биохимических показателей качества на сохраняемость и степень поражения моркови столовой различными видами болезней в процессе хранения. Исследования проводились в 2011–2016 годах во ВНИИО – филиале ФГБНУ ФНЦО по общепринятым методикам. В биохимической лаборатории отдела земледелия и агрохимии содержание сухого вещества определяли высушиванием до абсолютно сухого веса, общего сахара – по Бертрану, аскорбиновой кислоты – по Мурри, нитраты – ионоселективным методом. При характеристике моркови столовой важнейший показатель, определяющий его качество – количество сухого вещества и сахаров. В процессе хранения были выявлены следующие болезни моркови: серая гниль (Botrytis cinerea Pers. ex Fr.), белая гниль (Sclerotinia sclerotiorum (Lib.)), белая парша (Rhizoctonia carotae Rad.), альтернариоз (Alternaria radicina M., Dr. et E.). В большей степени сортообразцы моркови столовой поражались серой гнилью. Лучшими по сохраняемости сортообразцами были Корсар (94,6%), F1Берлин (94,5%), Берликум Роял (94,1%) и F1 Звезда (94%). Сохраняемость у зарубежных сортов и гибридов моркови столовой была немного выше, чем у отечественных (на 0,4%) как за счет меньшей величины убыли массы (6,3% против 6,4%), так и потерь от болезней (1,6% против 1,9%). Сохраняемость корнеплодов моркови находится в прямой корреляционной зависимости от содержания сухого вещества (r=+0,41), каротиноидов (r=+0,39), моносахаров (r­=+0,30) и суммы сахаров (r=+0,27). Проявление серой гнили находится в обратной корреляционной связи с содержанием сухого вещества и каротиноидов (r=-0,37 и r=-0,35 соответственно), белой парши – в прямой корреляции с содержанием сухого вещества , моносахаров и дисахаров (r= +0,21; r= +0,39; r= -0,41 соответственно), белой гнили в обратной корреляционной связи с содержанием сухого вещества, моносахаров и дисахаров. The purpose of the research is to assess the persistence and disease resistance of modern varieties and hybrids of carrots and to determine the correlation between the influence of biochemical quality indicators on the persistence and degree of damage to carrots by various types of diseases during storage. The research was conducted in 2011–2016 at ARRIVG – branch of FSBSI FSVC, according to generally accepted methods. In the biochemical laboratory of the Department of Agriculture and Agrochemistry, the dry matter content was determined by drying to absolutely dry weight, total sugar – by Bertran, ascorbic acid – by Murri, nitrates – by the ion-selective method. When describing carrots, the most important indicator that determines its quality is the amount of dry matter and sugars. During storage, the following diseases of carrots were detected: gray rot (Botrytis cinerea Pers. ex Fr.), white rot (Sclerotinia sclerotiorum (Lib.), white scab (Rhizoctonia carotae Rad.), alternariasis (Alternaria radicina M., Dr. et E.). To a greater extent, varieties of table carrots were affected by gray rot. The best preserved varieties were Corsar (94.6%), F1 Berlin (94.5%), Berlicum Royal (94.1%) and F1 Zvezda (94%). The persistence of foreign varieties and hybrids of table carrots was slightly higher than that of domestic ones by 0.4%. both due to a smaller amount of weight loss (6.3% vs. 6.4%) and losses from diseases (1.6% vs. 1.9%). The persistence of carrot root crops is directly correlated with the content of dry matter (r=+0.41), carotenoids (r=+0.39), monosaccharides (r=+0.30) and the amount of sugars (r=+0.27). The manifestation of gray rot is in inverse correlation with the content of dry matter and carotenoids (r=-0.37 and r=-0.35, respectively), white scab is in direct correlation with the content of dry matter (r= +0.21; r= +0.39; r= –0.41, respectively), white rot is in inverse correlation with the content of dry matter, monosaccharides and disaccharides.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 370
Author(s):  
Arkadiusz Artyszak ◽  
Dariusz Gozdowski ◽  
Alicja Siuda

Water shortage and drought are a growing problem in Europe. Therefore, effective methods for limiting its effects are necessary. At the same time, the “field to fork” strategy adopted by the European Commission aims to achieve a significant reduction in the use of plant protection products and fertilizers in the European Union. In an experiment conducted in 2018–2020, the effect of the method of foliar fertilization containing silicon and potassium on the yield and technological quality of sugar beet roots was assessed. The fertilizer was used in seven combinations, differing in the number and time of application. The best results were obtained by treating plants during drought stress. The better soil moisture for the plants, the smaller the pure sugar yield increase was observed. It is difficult to clearly state which combination of silicon and potassium foliar application is optimal, as their effects do not differ greatly.


2012 ◽  
Vol 7 (9) ◽  
pp. 1934578X1200700 ◽  
Author(s):  
Paraj Shukla ◽  
Suresh Walia ◽  
Vivek Ahluwalia ◽  
Balraj S. Parmar ◽  
Muraleedharan G. Nair

Thirty known dialkanoates of ethylene, propylene and diethylene glycols were synthesized by reacting the glycols with acyl chlorides and their structures confirmed by IR, NMR and mass spectral analyses. They exhibited significant antifungal activity against two phytopathogenic fungi Rhizoctonia solani Kuehn and Sclerotium rolfsii Sacc in a dose dependent manner. Propylene glycol dipentanoate was the most active against R. solani. followed by diethylene glycol dibutanoate and ethylene glycol dibutanoate. Against S. rolfsii ethylene glycol diheptanoate was found to be most active followed by diethylene glycol diisobutanoate As compared to the standard reference benomyl (EC50 5.16 μg/mL), the potential alkanediol dialkanoates showed EC50 in the range of 33 – 60 μg/mL.


2016 ◽  
Vol 146 (1) ◽  
pp. 37-45 ◽  
Author(s):  
Hong-Jie Liang ◽  
Xiao-Ming Lu ◽  
Zu-Qing Zhu ◽  
Fu-Xing Zhu

2021 ◽  
Vol 12 ◽  
Author(s):  
Khanh Duy Le ◽  
Jeun Kim ◽  
Hoa Thi Nguyen ◽  
Nan Hee Yu ◽  
Ae Ran Park ◽  
...  

Plant bacterial and fungal diseases cause significant agricultural losses and need to be controlled. Beneficial bacteria are promising candidates for controlling these diseases. In this study, Streptomyces sp. JCK-6131 exhibited broad-spectrum antagonistic activity against various phytopathogenic bacteria and fungi. In vitro assays showed that the fermentation filtrate of JCK-6131 inhibited the growth of bacteria and fungi with minimum concentration inhibitory (MIC) values of 0.31–10% and 0.31–1.25%, respectively. In the in vivo experiments, treatment with JCK-6131 effectively suppressed the development of apple fire blight, tomato bacterial wilt, and cucumber Fusarium wilt in a dose-dependent manner. RP-HPLC and ESI-MS/MS analyses indicated that JCK-6131 can produce several antimicrobial compounds, three of which were identified as streptothricin E acid, streptothricin D, and 12-carbamoyl streptothricin D. In addition, the disease control efficacy of the foliar application of JCK-6131 against tomato bacterial wilt was similar to that of the soil drench application, indicating that JCK-6131 could enhance defense resistance in plants. Molecular studies on tomato plants showed that JCK-6131 treatment induced the expression of the pathogenesis-related (PR) genes PR1, PR3, PR5, and PR12, suggesting the simultaneous activation of the salicylate (SA) and jasmonate (JA) signaling pathways. The transcription levels of PR genes increased earlier and were higher in treated plants than in untreated plants following Ralstonia solanacearum infection. These results indicate that Streptomyces sp. JCK-6131 can effectively control various plant bacterial and fungal diseases via two distinct mechanisms of antibiosis and induced resistance.


2014 ◽  
Vol 32 (1) ◽  
pp. 31-39
Author(s):  
Joanna Marcinkowska

Seeds of 11 Austrian winter pea genotypes, harvested at Radzików (CEP) in 1993 and 1994, were evaluated for fungi occurrence on Coon's agar medium in Petri plates. Number of species isolated depended on the genotype and year of collection. <i>Alternaria alternata, Stemphylium botryosum</i> were found on all the tested samples and <i>Phoma pinodella</i> and <i>Fusarium poae</i> were also common while <i>Botrytis cinerea, Sclerotinia sclerotiorum</i> and <i>Mycosphaerella pinodes</i> appeared to be common only in 1993. Three species occurred only once. The mycoflora was richer in 1993. The common seed inhabitants usually transmitted higher percentage of fungi than species occuring more seldom.


Sign in / Sign up

Export Citation Format

Share Document