scholarly journals Recovery of Valuable Materials and Methods for Their Management When Recycling Thin-Film CdTe Photovoltaic Modules

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7836
Author(s):  
Anna Kuczyńska-Łażewska ◽  
Ewa Klugmann-Radziemska ◽  
Agnieszka Witkowska

Due to the development of new photovoltaic technologies, there is a need to research new recycling methods for these new materials. The recovery of metals from photovoltaic (PV) modules would reduce the consumption of raw materials. Therefore, the development of recycling technologies for used and damaged modules of newer generations is important for environmental reasons. The aim of the research is to shed light on the nature of the chemical reactions that occur in recycling technology for second-generation photovoltaic modules. This work is focused mainly on cells made of Cadmium Telluride (CdTe). It was proven that prior thermal delamination was necessary. Moreover, an improvement in understanding of the recovery process depending on used leaching solution was achieved.

Author(s):  
Alessio Bosio

A brief overview of the main photovoltaic technologies is chronologically presented. Single-crystal and multi-crystalline, epitaxial and thin film inorganic materials are widely used as absorbers in high efficiency solar cells and modules. A schematic representation of the principal devices developed in more then 70 years of research will be displayed and commented. Among thin-film technology, cadmium telluride (CdTe) has achieved a truly impressive development that can commercially compete with silicon, which is still the king of the market. Solar cells made on a laboratory scale have reached efficiencies close to 22%, while modules made with fully automated in-line machines show efficiencies above 18%. Based on the research developed in our laboratory, the fabrication processes of both CdTe polycrystalline thin-film solar cells and photovoltaic modules are critically discussed. The most common substrates, the constituent layers and their interaction, the interfaces and the different “tricks” commonly used for obtaining highly efficient devices will be analyzed. A realistic industrial production process will be analytically described.


Author(s):  
L. M. Peter

The opportunities for photovoltaic (PV) solar energy conversion are reviewed in the context of projected world energy demands for the twenty-first century. Conventional single-crystal silicon solar cells are facing increasingly strong competition from thin-film solar cells based primarily on polycrystalline absorber materials, such as cadmium telluride (CdTe) and copper indium gallium diselenide (CIGS). However, if PVs are to make a significant contribution to satisfy global energy requirements, issues of sustainability and cost will need to be addressed with increased urgency. There is a clear need to expand the range of materials and processes that is available for thin-film solar cell manufacture, placing particular emphasis on low-energy processing and sustainable non-toxic raw materials. The potential of new materials is exemplified by copper zinc tin sulphide, which is emerging as a viable alternative to the more toxic CdTe and the more expensive CIGS absorber materials.


1999 ◽  
Vol 606 ◽  
Author(s):  
Keishi Nishio ◽  
Jirawat Thongrueng ◽  
Yuichi Watanabe ◽  
Toshio Tsuchiya

AbstructWe succeeded in the preparation of strontium-barium niobate (Sr0.3Ba0.7Nb2O6 : SBN30)that have a tetragonal tungsten bronze type structure thin films on SrTiO3 (100), STO, or La doped SrTiO3 (100), LSTO, single crystal substrates by a spin coating process. LSTO substrate can be used for electrode. A homogeneous coating solution was prepared with Sr and Ba acetates and Nb(OEt)5 as raw materials, and acetic acid and diethylene glycol monomethyl ether as solvents. The coating thin films were sintered at temperature from 700 to 1000°C for 10 min in air. It was confirmed that the thin films on STO substrate sintered above 700°C were in the epitaxial growth because the 16 diffraction spots were observed on the pole figure using (121) reflection. The <130> and <310> direction of the thin film on STO were oriented with the c-axis in parallel to the substrate surface. However, the diffraction spots of thin film on LSTO substrate sintered at 700°C were corresponds to the expected pattern for (110).


Author(s):  
Siraj Salman Mohammad ◽  
Renata Oliveira Santos ◽  
Maria Ivone Barbosa ◽  
José Lucena Barbosa Junior

: Anthocyanins are widely spread in different kinds of food, especially fruits and floral tissues, there is an extensive range of anthocyanin compounds reach more than 600 exist in nature. Anthocyanins can be used as antioxidants and raw material for several applications in food and pharmaceutical industry. Consequently, a plenty of studies about anthocyanins sources and extraction methods were reported. Furthermore, many studies about their stability, bioactive and therapeutic properties have been done. According to the body of work, we firstly worked to shed light on anthocyanin properties including chemical, antioxidant and extraction properties. Secondly, we reported the applications and health benefits of anthocyanin including the applications in food processes and anthocyanin characteristics as therapeutic and prophylactic compounds. We reviewed anticancer, anti-diabetic, anti-fatness, oxidative Stress and lipid decreasing and vasoprotective effects of anthocyanins. In conclusion, because the importance of phytochemicals and bioactive compounds the research is still continuing to find new anthocyanins from natural sources and invest them as raw materials in the pharmaceutical and nutrition applications.


Author(s):  
Ahmad Alheloo ◽  
Jim Joseph John ◽  
Omar Albadwawi ◽  
Ali Almheiri ◽  
Hebatalla Alhamadani ◽  
...  
Keyword(s):  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Long Hu ◽  
Qian Zhao ◽  
Shujuan Huang ◽  
Jianghui Zheng ◽  
Xinwei Guan ◽  
...  

AbstractAll-inorganic CsPbI3 perovskite quantum dots have received substantial research interest for photovoltaic applications because of higher efficiency compared to solar cells using other quantum dots materials and the various exciting properties that perovskites have to offer. These quantum dot devices also exhibit good mechanical stability amongst various thin-film photovoltaic technologies. We demonstrate higher mechanical endurance of quantum dot films compared to bulk thin film and highlight the importance of further research on high-performance and flexible optoelectronic devices using nanoscale grains as an advantage. Specifically, we develop a hybrid interfacial architecture consisting of CsPbI3 quantum dot/PCBM heterojunction, enabling an energy cascade for efficient charge transfer and mechanical adhesion. The champion CsPbI3 quantum dot solar cell has an efficiency of 15.1% (stabilized power output of 14.61%), which is among the highest report to date. Building on this strategy, we further demonstrate a highest efficiency of 12.3% in flexible quantum dot photovoltaics.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Wonwook Oh ◽  
Seongtak Kim ◽  
Soohyun Bae ◽  
Nochang Park ◽  
Sung-Il Chan ◽  
...  

We investigated the migration of Sn and Pb onto the Ag fingers of crystalline Si solar cells in photovoltaic modules aged in field for 6 years. Layers of Sn and Pb were found on the Ag fingers down to the edge of the solar cells. This phenomenon is not observed in a standard acceleration test condition for PV modules. In contrast to the acceleration test conditions, field aging subjects the PV modules to solar irradiation and moisture condensation at the interface between the solar cells and the encapsulant. The solder ribbon releases Sn and Pb via repeated galvanic corrosion and the Sn and Pb precipitate on Ag fingers due to the light-induced plating under solar irradiation.


Author(s):  
Tejas U. Ulavi ◽  
Jane H. Davidson ◽  
Tim Hebrink

The technical performance of a non-tracking hybrid PV/T concept that uses a wavelength selective film is modeled. The wavelength selective film is coupled with a compound parabolic concentrator to reflect and concentrate the infrared portion of the solar spectrum onto a tubular absorber while transmitting the visible portion of the spectrum to an underlying thin-film photovoltaic module. The optical performance of the CPC/selective film is obtained through Monte Carlo Ray-Tracing. The CPC geometry is optimized for maximum total energy generation for a roof-top application. Applied to a rooftop in Phoenix, Arizona USA, the hybrid PV/T provides 20% more energy compared to a system of the same area with independent solar thermal and PV modules, but the increase is achieved at the expense of a decrease in the electrical efficiency from 8.8% to 5.8%.


Author(s):  
Heangwoo Lee ◽  
Xiaolong Zhao ◽  
Janghoo Seo

Recent studies on light shelves found that building energy efficiency could be maximized by applying photovoltaic (PV) modules to light shelf reflectors. Although PV modules generate a substantial amount of heat and change the consumption of indoor heating and cooling energy, performance evaluations carried out thus far have not considered these factors. This study validated the effectiveness of PV module light shelves and determined optimal specifications while considering heating and cooling energy savings. A full-scale testbed was built to evaluate performance according to light shelf variables. The uniformity ratio was found to improve according to the light shelf angle value and decreased as the PV module installation area increased. It was determined that PV modules should be considered in the design of light shelves as their daylighting and concentration efficiency change according to their angles. PV modules installed on light shelves were also found to change the indoor cooling and heating environment; the degree of such change increased as the area of the PV module increased. Lastly, light shelf specifications for reducing building energy, including heating and cooling energy, were not found to apply to PV modules since PV modules on light shelf reflectors increase building energy consumption.


Sign in / Sign up

Export Citation Format

Share Document