scholarly journals Chemical Modification of Chitosan for Removal of Pb(II) Ions from Aqueous Solutions

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7894
Author(s):  
Adriana Popa ◽  
Aurelia Visa ◽  
Bianca Maranescu ◽  
Iosif Hulka ◽  
Lavinia Lupa

Biomacromolecule have a significant contribution to the adsorption of metal ions. Moreover, chitosan is one of the most studied biomacromolecule, which has shown a good performance in the field of wastewater treatment. In this context, a new adsorbent of the aminophosphonic modified chitosan-supported Ni(II) ions type was prepared from the naturally biopolymer, chitosan. In the first step, modified chitosan with aminophosphonic acid groups was prepared using the “one-pot” Kabachnik-Fields reaction. It was characterized by different techniques: FTIR, SEM/EDAX, TGA, and 31P-NMR. In the second step, the modified chitosan with aminophosphonic acid was impregnated with Ni(II) ions using the hydrothermal reaction at different values of pH (5, 6 and 7). The physical-chemical characteristics of final products (modified chitosan carrying aminophosphonic groups and Ni(II) ions) were investigated using FTIR, SEM images, EDAX spectra and thermogravimetric analysis. In this work, the most important objective was the investigation of the adsorbent performance of the chitosan modified with aminophosphonic groups and Ni(II) ions in the process of removing Pb(II) ions from aqueous solutions by studying the effect of pH, contact time, and Pb(II) ions concentration. For removal of Pb(II) ions from the aqueous solution, the batch adsorption method was used.

SynOpen ◽  
2021 ◽  
Author(s):  
Mina Ghassemi ◽  
Ali Maleki

Copper ferrite (CuFe2O4) magnetic nanoparticles (MNPs) were synthesized via thermal decomposition method and applied as a reusable and green catalyst in the synthesis of functionalized 4H-pyran derivatives using malononitrile, an aromatic aldehyde and a β-ketoester in ethanol at room temperature. Then it was characterized by Fourier transform infrared spectroscopy (FT-IR), energy-dispersive X-ray spectroscopy (EDX) analysis, scanning electron microscopy (SEM) images, thermo gravimetric and differential thermo gravimetric (TGA/DTG) analysis. The catalyst was recovered from the reaction mixture by applying an external magnet and decanting the mixture. Recycled catalyst was reused for several times without significant loss in its activity. Running the one-pot three-component reaction at room temperature, no use of eternal energy source and using a green solvent provide benign, mild, and environmentally friendly reaction conditions; as well, ease of catalyst recovering, catalyst recyclability, no use of column chromatography and good to excellent yields are extra advantages of this work.


2013 ◽  
Vol 726-731 ◽  
pp. 695-699
Author(s):  
Li Hong ◽  
Si Xiang Wang ◽  
Yong Liu ◽  
Yue Chun Zhang

Humic acid adsorbent modified with metal ions was prepared by gel polymerization and named gel composite of metal ion and humic acid, which abbreviated GCMH to uptake fluoride from drinking water. The samples were measured by X-ray diffraction (XRD) patterns and scanning electron microscope (SEM) images. Fluoride adsorption onto the synthesized samples was investigated by batch adsorption method. In previous works, detailed studies were carried out to investigate the effect of contact time, adsorbent dose, initial solution pH, temperatures and co-existing anions. The maximum fluoride removal was obtained at pH7. Presence of HCO3− adversely affected the adsorption of fluoride. The optimum absorption conditions were at the dose of 10g/L, temperature of water of 55°Cand contact time of 6hs.


2019 ◽  
Vol 9 (18) ◽  
pp. 3732 ◽  
Author(s):  
Sahira Joshi ◽  
Manobin Sharma ◽  
Anshu Kumari ◽  
Surendra Shrestha ◽  
Bhanu Shrestha

This study aimed to develop magnetic Fe3O4/sugarcane bagasse activated carbon composite for the adsorption of arsenic (III) from aqueous solutions. Activated carbon (AC) was prepared from sugarcane bagasse by chemical activation using H3PO4 as an activating agent at 400 °C. To enhance adsorption capacity for arsenic, the resultant AC was composited with Fe3O4 particles by facile one-pot hydrothermal treatment. This method involves mixing the AC with aqueous solution of iron (II) chloride tetrahydrate, polyvinyl pyrrolidone (PVP), and ethanol. Batch adsorption experiments were conducted for the adsorption of As (III) onto the composite. The effects of pH, adsorbent dosage, and contact time on the arsenic adsorption were studied. The result showed that the composite could remove the arsenic from the water far more effectively than the plain AC. The highest percentage of arsenic removal was found at pH at 8, adsorbent dose of 1.8 g/L, and contact time of 60 min. Langmuir and Freundlich adsorption isotherm was used to analyze the equilibrium experimental data. Langmuir model showed the best fit compared to the Freundlich model with a maximal capacity of 6.69 mg/g. These findings indicated that magnetic Fe3O4/sugarcane bagasse AC composite could be potentially applied for adsorptive removal of arsenic (III) from aqueous solutions.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 285 ◽  
Author(s):  
Anna Wołowicz ◽  
Monika Wawrzkiewicz

The development of new, cheaper, and more effective technologies to decrease the amount of wastewater containing heavy metals and to improve the quality is indispensable. Adsorption has become one of the alternative treatment methods. A small number of studies focusing on the batch technique for nickel ion removal by the new generation ion exchangers are described in the literature. In this paper, the Ni(II) removal from aqueous solutions using the ion exchange resins of different types was investigated. The experiments were conducted at different HCl and HCl/HNO3 concentrations, and the initial concentration was 100 mg Ni(II)/L. The investigation of the Ni(II) desorption from the chosen resins were carried out. The Ni(II) removal efficiency and the rate of removal are shown on the kinetic curves and the rate constants as well as kinetic parameters were collected and compared. The isotherm parameters were calculated and Fourier-transform infrared spectroscopy with the attenuated total reflection spectra was performed to determine the nature of adsorption. The experimental results showed that the Ni(II) percentage removal is high and Lewatit MonoPlus TP220 could be an alternative for the treatment of nickel(II) containing wastewaters.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 391
Author(s):  
Zhansheng Wu ◽  
Pengyun Liu ◽  
Zhilin Wu ◽  
Giancarlo Cravotto

This study aimed to improve the adsorption capacity of activated carbon (AC) towards naphthalene (NAP) in aqueous solutions. Starch-based AC (SAC) and pulverized coal-based AC (PCAC) were prepared in a one-pot procedure by activation with oleic acid and KOH under microwave heating. Brunauer–Emmett–Teller (BET) specific surface areas reached 725.0 and 912.9 m2/g for in situ modified SAC (O-SAC1) and PCAC (O-PCAC1), respectively. π–π bond, H-bond, and hydrophobic effects were directly involved in the NAP adsorption process. Batch adsorption data were well fitted by pseudo-second order kinetics and the Freundlich isotherm model. As compared to ACs prepared with only KOH activation, NAP adsorption capacities of PCAC and SAC prepared by the one-pot method increased by 16.9% and 13.7%, respectively. Influences of varying factors were investigated in column adsorption of NAP using O-SAC1 and O-PCAC1. Based on breakthrough curves analysis, the larger column height (H), lower flow rate (Q0), and lower initial concentration (C0) resulted in the longer breakthrough and exhaustion times in both cases. Specifically, we concluded that O-PCAC1 exhibits better adsorption capacity than O-SAC1 in the given conditions. The optimized operating parameters were 1 cm (H), 1 mL/min (Q0) and 30 mg/L (C0). Finally, column adsorption data could be well fitted by the Thomas model.


2012 ◽  
Vol 65 (4) ◽  
pp. 618-623 ◽  
Author(s):  
Reyna G. Sánchez-Duarte ◽  
Dalia I. Sánchez-Machado ◽  
Jaime López-Cervantes ◽  
Ma. A. Correa-Murrieta

The present study was designed to evaluate the chitosan, which has been obtained by deacetylation of chitin, as a biosorbent. The chitin was isolated from fermented shrimp waste by an important local industrial food biopolymer. The aim of this work was the characterization of chitosan and preparation of cross-linked chitosan- tripolyphosphate (chitosan-TPP) beads for the removal of allura red food dye from aqueous solutions. Conditions of batch adsorption such as pH, time and adsorbent dose were examined. The effectiveness of cross-linked chitosan beads for dye removal was found to be higher for pH 2 (98%, percentage of dye removal) and tends to decrease at pHs of 3 to 11 (up to 49%). The values of percentage removal show that the adsorption capacity increases with time of contact and dosage of chitosan-TPP, but red dye adsorption is mainly influenced by pH level. The cross-linked chitosan-TPP beads can significantly adsorb allura red monoazo dye from aqueous solutions even at acidic pHs unlike raw chitosan beads that tend to dissolve in acidic solutions. Consequently, this modified chitosan has characteristics that allow minimization of environmental pollution and widening the valorization of shrimp waste.


2013 ◽  
Vol 3 (1) ◽  
pp. 47-54 ◽  
Author(s):  
Ahmed Al-Ghamdi ◽  
Hosam Altaher ◽  
Waid Omar

In this research raw date palm trunk fibers were used to adsorb cadmium ions from aqueous solutions. The date palm trunk fibers are considered as agricultural waste which is available in huge quantities in the Kingdom of Saudi Arabia. In order to assess the feasibility and the efficiency of using this as an adsorbent, a series of experiments were conducted in a batch adsorption method. The effects of the process variables such as fiber size, mixing rate, mixing time, temperature, solution pH and adsorbent dose on the adsorption capacity of date palm fibers were studied. The results obtained indicated that the adsorption capacity of Cd2+ increased from 29.06 to 51.1 mg/g as the particle size decreased from 875 to 100 μm. It was found that the adsorption capacity of Cd2+ decreased in the strong acidic medium and increased rapidly as the solution pH increased from 1.69 to 3.71. The adsorption capacity was observed to have an insignificant change on raising the temperature from 12 to 34 °C and increasing of mixing speed from 100 to 500 rpm. Also, one very important finding of this research is that the equilibrium time of the adsorption process is very short. The maximum adsorption capacity was obtained after 10 minutes.


2015 ◽  
Vol 12 (6) ◽  
pp. 3996-4008
Author(s):  
Hussein A Mohamed ◽  
Magdy A Wassel ◽  
Rabie S Farg ◽  
Hassan A Shehata ◽  
Aamal M Anwar

The object of this study is to assess the removal of Fe(III) ions from aqueous solutions onto modified chitosan. The effect of various parameters has been investigated by the following batch adsorption technique. The various variables studied include initial concentration of the adsorbate, agitation time, adsorbent dosage, kinetics, influence of temperature. The experimental data was fit well to the Freundlich isotherm. Thermodynamic parameters such as ΔH, ΔS and ΔG were calculated, indicating that the adsorption was spontaneous and endothermic nature.


2016 ◽  
Vol 12 (2) ◽  
pp. 3996-4008
Author(s):  
Hussein A Mohamed ◽  
Magdy A Wassel ◽  
Rabie S Farg ◽  
Hassan A Shehata ◽  
Aamal M Anwar

The object of this study is to assess the removal of Fe(III) ions from aqueous solutions onto modified chitosan. The effect of various parameters has been investigated by the following batch adsorption technique. The various variables studied include initial concentration of the adsorbate, agitation time, adsorbent dosage, kinetics, influence of temperature. The experimental data was fit well to the Freundlich isotherm. Thermodynamic parameters such as ΔH, ΔS and ΔG were calculated, indicating that the adsorption was spontaneous and endothermic nature.


Sign in / Sign up

Export Citation Format

Share Document