scholarly journals Resistivity Testing of Palladium Dilution Limits in CoPd Alloys for Hydrogen Storage

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 111
Author(s):  
Sudhansu Sekhar Das ◽  
Gregory Kopnov ◽  
Alexander Gerber

Palladium satisfies most of the requirements for an effective hydrogen storage material with two major drawbacks: it has a relatively low gravimetric hydrogen density and is prohibitively expensive for large scale applications. Pd-based alloys should be considered as possible alternatives to a pure Pd. The question is how much one can dilute the Pd concentration in a variety of candidate materials while preserving the hydrogen absorption capability. We demonstrate that the resistivity measurements of thin film alloy samples can be used for a qualitative high-throughput screening and study of the hydrogen absorbing properties over the entire range of palladium concentrations. Contrary to palladium-rich alloys where additional hydrogen scattering indicates a degree of hydrogen content, the diluted alloy films respond by a decrease in resistance due to their thickness expansion. Evidence of significant hydrogen absorption was found in thin CoPd films diluted to just 20% of Pd.

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
N. A. Niaz ◽  
I. Ahmad ◽  
N. R. Khalid ◽  
E. Ahmed ◽  
S. M. Abbas ◽  
...  

Magnesium (Mg) and iron (Fe) nanoparticles are prepared by thermal decomposition of bipyridyl complexes of metals. These prepared Mg-Fe (2 : 1) nanoparticles are hydrogenated under 4 MPa hydrogen pressure and 673 K for 48 hours to achieve Mg2FeH6. Their structural analysis was assessed by applying manifold techniques. The hydrogen storage properties of prepared compound were measured by Sieverts type apparatus. The desorption kinetics were measured by high pressure thermal desorption spectrometer (HP-TDS). More than 5 wt% hydrogen released was obtained by the Mg2FeH6within 5 min, and during rehydrogenation very effective hydrogen absorption rate was observed by the compound.


Molecules ◽  
2019 ◽  
Vol 24 (8) ◽  
pp. 1542 ◽  
Author(s):  
Jiangfeng Song ◽  
Jingchuan Wang ◽  
Xiaoyu Hu ◽  
Daqiao Meng ◽  
Shumao Wang

As a hydrogen storage material, Zr2Fe alloy has many advantages such as fast hydrogen absorption speed, high tritium recovery efficiency, strong anti-pulverization ability, and difficulty self-igniting in air. Zr2Fe alloy has lower hydrogen absorption pressure at room temperature than LaNi5 alloy. Compared with the ZrVFe alloy, the hydrogen release temperature of Zr2Fe is lower so that the material can recover hydrogen isotopes at lower hydrogen concentration efficiently. Unfortunately, the main problem of Zr2Fe alloy in application is that a disproportionation reaction is easy to occur after hydrogen absorption at high temperature. At present, there is little research on the generation and influencing factors of a disproportionation reaction in Zr2Fe alloy. In this paper, the effects of temperature and hydrogen pressure on the disproportionation of Zr2Fe alloy were studied systematically. The specific activation conditions and experimental parameters for reducing alloy disproportionation are given, which provide a reference for the specific application of Zr2Fe alloy.


2019 ◽  
Author(s):  
Mohammad Atif Faiz Afzal ◽  
Mojtaba Haghighatlari ◽  
Sai Prasad Ganesh ◽  
Chong Cheng ◽  
Johannes Hachmann

<div>We present a high-throughput computational study to identify novel polyimides (PIs) with exceptional refractive index (RI) values for use as optic or optoelectronic materials. Our study utilizes an RI prediction protocol based on a combination of first-principles and data modeling developed in previous work, which we employ on a large-scale PI candidate library generated with the ChemLG code. We deploy the virtual screening software ChemHTPS to automate the assessment of this extensive pool of PI structures in order to determine the performance potential of each candidate. This rapid and efficient approach yields a number of highly promising leads compounds. Using the data mining and machine learning program package ChemML, we analyze the top candidates with respect to prevalent structural features and feature combinations that distinguish them from less promising ones. In particular, we explore the utility of various strategies that introduce highly polarizable moieties into the PI backbone to increase its RI yield. The derived insights provide a foundation for rational and targeted design that goes beyond traditional trial-and-error searches.</div>


2020 ◽  
Vol 17 (5) ◽  
pp. 716-724
Author(s):  
Yan A. Ivanenkov ◽  
Renat S. Yamidanov ◽  
Ilya A. Osterman ◽  
Petr V. Sergiev ◽  
Vladimir A. Aladinskiy ◽  
...  

Background: The key issue in the development of novel antimicrobials is a rapid expansion of new bacterial strains resistant to current antibiotics. Indeed, World Health Organization has reported that bacteria commonly causing infections in hospitals and in the community, e.g. E. Coli, K. pneumoniae and S. aureus, have high resistance vs the last generations of cephalosporins, carbapenems and fluoroquinolones. During the past decades, only few successful efforts to develop and launch new antibacterial medications have been performed. This study aims to identify new class of antibacterial agents using novel high-throughput screening technique. Methods: We have designed library containing 125K compounds not similar in structure (Tanimoto coeff.< 0.7) to that published previously as antibiotics. The HTS platform based on double reporter system pDualrep2 was used to distinguish between molecules able to block translational machinery or induce SOS-response in a model E. coli system. MICs for most active chemicals in LB and M9 medium were determined using broth microdilution assay. Results: In an attempt to discover novel classes of antibacterials, we performed HTS of a large-scale small molecule library using our unique screening platform. This approach permitted us to quickly and robustly evaluate a lot of compounds as well as to determine the mechanism of action in the case of compounds being either translational machinery inhibitors or DNA-damaging agents/replication blockers. HTS has resulted in several new structural classes of molecules exhibiting an attractive antibacterial activity. Herein, we report as promising antibacterials. Two most active compounds from this series showed MIC value of 1.2 (5) and 1.8 μg/mL (6) and good selectivity index. Compound 6 caused RFP induction and low SOS response. In vitro luciferase assay has revealed that it is able to slightly inhibit protein biosynthesis. Compound 5 was tested on several archival strains and exhibited slight activity against gram-negative bacteria and outstanding activity against S. aureus. The key structural requirements for antibacterial potency were also explored. We found, that the unsubstituted carboxylic group is crucial for antibacterial activity as well as the presence of bulky hydrophobic substituents at phenyl fragment. Conclusion: The obtained results provide a solid background for further characterization of the 5'- (carbonylamino)-2,3'-bithiophene-4'-carboxylate derivatives discussed herein as new class of antibacterials and their optimization campaign.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Takumi Kayukawa ◽  
Kenjiro Furuta ◽  
Keisuke Nagamine ◽  
Tetsuro Shinoda ◽  
Kiyoaki Yonesu ◽  
...  

Abstract Insecticide resistance has recently become a serious problem in the agricultural field. Development of insecticides with new mechanisms of action is essential to overcome this limitation. Juvenile hormone (JH) is an insect-specific hormone that plays key roles in maintaining the larval stage of insects. Hence, JH signaling pathway is considered a suitable target in the development of novel insecticides; however, only a few JH signaling inhibitors (JHSIs) have been reported, and no practical JHSIs have been developed. Here, we established a high-throughput screening (HTS) system for exploration of novel JHSIs using a Bombyx mori cell line (BmN_JF&AR cells) and carried out a large-scale screening in this cell line using a chemical library. The four-step HTS yielded 69 compounds as candidate JHSIs. Topical application of JHSI48 to B. mori larvae caused precocious metamorphosis. In ex vivo culture of the epidermis, JHSI48 suppressed the expression of the Krüppel homolog 1 gene, which is directly activated by JH-liganded receptor. Moreover, JHSI48 caused a parallel rightward shift in the JH response curve, suggesting that JHSI48 possesses a competitive antagonist-like activity. Thus, large-scale HTS using chemical libraries may have applications in development of future insecticides targeting the JH signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document