scholarly journals A Comparative Analysis of Selected Methods for Determining Young’s Modulus in Polylactic Acid Samples Manufactured with the FDM Method

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 149
Author(s):  
Bartosz Pszczółkowski ◽  
Konrad W. Nowak ◽  
Wojciech Rejmer ◽  
Mirosław Bramowicz ◽  
Łukasz Dzadz ◽  
...  

The objective of this study was to compare three methods for determining the Young’s modulus of polylactic acid (PLA) and acrylonitrile-butadiene-styrene (ABS) samples. The samples were manufactured viathe fused filament fabrication/fused deposition modeling (FFF/FDM) 3D printing technique. Samples for analysis were obtained at processing temperatures of 180 °C to 230 °C. Measurements were performed with the use of two nondestructive techniques: the impulse excitation technique (IET) and the ultrasonic (US) method. The results were compared with values obtained in static tensile tests (STT), which ranged from 2.06 ± 0.03 to 2.15 ± 0.05 GPa. Similar changes in Young’s modulus were observed in response to the processing temperatures of the compared methods. The values generated by the US method were closer to the results of the STT, but still diverged considerably, and the error exceeded 10% in all cases. Based on the present findings, it might be concluded that the results of destructive and nondestructive tests differ by approximately 1 GPa.

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 465
Author(s):  
Roberto Scaffaro ◽  
Maria Clara Citarrella ◽  
Emmanuel Fortunato Gulino ◽  
Marco Morreale

In this work, an innovative green composite was produced by adding Hedysarum coronarium (HC) flour to a starch-based biodegradable polymer (Mater-Bi®, MB). The flour was obtained by grinding together stems, leaves and flowers and subsequently sieving it, selecting a fraction from 75 μm to 300 μm. Four formulations have been produced by compression molding (CM) and fused deposition modeling (FDM) by adding 5%, 10%, 15% and 20% of HC to MB. The influence of filler content on the processability was tested, and rheological, morphological and mechanical properties of composites were also assessed. Through CM, it was possible to obtain easily homogeneous samples with all filler amounts. Concerning FDM, 5% and 10% HC-filled composites proved also easily printable. Mechanical results showed filler effectively acted as reinforcement: Young’s modulus and tensile strengths of the composites increased from 74.3 MPa to 236 MPa and from 18.6 MPa to 33.4 MPa, respectively, when 20% of HC was added to the pure matrix. FDM samples, moreover, showed higher mechanical properties if compared with CM ones due to rectilinear infill and fibers orientation. In fact, regarding the 10% HC composites, Young’s modulus of the CM and FDM ones displayed a relative increment of 176% and 224%, respectively.


2017 ◽  
Vol 54 (1) ◽  
pp. 98-102 ◽  
Author(s):  
Roxana Miclaus ◽  
Angela Repanovici ◽  
Nadinne Roman

Since the development of 3D printing, over the past decades, the domain of application has evolved significantly! Concerning the orthosis and prosthesis manufacturing, the 3D printing offers many possibilities for developing new medical devices for people with disabilities. Our paper wish to synthetize the main 3D printing methods and the biomaterial properties which can be used in orthosis and prosthesis manufacturing, like polylactic acid or acrylonitrile butadiene styrene. Fused Deposition Modeling and Stereo lithography are most used for medical devices manufacturing and usually using polylactic acid, considering the properties of this polymer and de organic componence.


Enfoque UTE ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 13-27
Author(s):  
Juan Carlos Parra Mena ◽  
Erling Ricardo Gallardo Vizuete ◽  
Erick Damian Torres Peñaloza

The evaluation of the tensile strength of printed parts by means of fused deposition modeling (FDM) or fused filament fabrication (FFF) is essential, since parts whose resistance does not differ significantly depending on the percentage of filling used can be obtained, optimizing the use of the material. The present work details the analysis of polylactic acid (PLA) specimens manufactured according to ASTM D 638 with different percentages for the most commonly used filling patterns (Honeycomb, Octagram, Stars, Archimedean, Hilbert and Triangles). With the help of an analysis of variance and a design of experiments with a single factor, the appropriate percentages for printing parts according to the desired filling pattern are obtained.


2021 ◽  
Author(s):  
Ziyi Su ◽  
Kazuaki Inaba ◽  
Amit Karmakar ◽  
Apurba Das

Abstract Application of functionally graded materials (FGMs) in energy, aviation and nuclear industries has increased since the last decade due to potential reduction of in-plane and transverse through-the-thickness stresses, enhanced residual stress distribution, superior thermal properties, free from delamination, and reduced stress intensity factors. FGMs are categorized as an advanced class of composite materials where the two constituent materials are graded along the thickness direction. Absence of sharp change in material property in the interface layer eliminates the problem of delamination and debonding, which is a major concern for traditional composite material. In this work, PLA-ABS functionally graded material is manufactured using additive manufacturing techniques through fused deposition modeling (FDM) using Y-type extruder. X-ray computed tomography test is conducted to see the air void (generated during printing) distribution in the printed FGM. Tensile test (as per ISO-527standrad) is conducted to evaluate the Young’s Modulus of additive manufactured FGMs. Three different measuring positions are considered in the FGM specimens to check the effect of property change along the grading direction. Tensile test results of PLA-ABS FGM are compared with their individual constituents (ABS and PLA). Further, flexural vibration test is conducted to evaluate the natural frequency of printed FGM beam. Experimentally determined mechanical and dynamic characteristics in terms effective Young’s Modulus and natural frequency are analyzed and discussed.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ana Pilar Valerga Puerta ◽  
J.D. Lopez-Castro ◽  
Adrián Ojeda López ◽  
Severo Raúl Fernández Vidal

Purpose Fused filament fabrication or fused deposition modeling (FFF/FDM) has as one of its main restrictions the surface quality intrinsic to the process, especially linked to the layer thickness used during manufacture. The purpose of this paper is to study the possibility of improving the surface quality of polylactic acid (PLA) parts manufactured by FFF using the shot blasting technique. Design/methodology/approach The influence of corundum blasting on 0.2 mm layer thickness FDM PLA parts treated with two sizes of abrasive, different exposure times and different incidence pressures. Findings As a result, improvements of almost 80% were obtained in the surface roughness of the pieces with high exposure times, and more than 50% in just 20 s. Originality/value This technique is cheap, versatile and adaptable to different part sizes and geometries. Furthermore, it is a fast and environmentally friendly technique compared to conventional machining or vapor smoothing. Despite this, no previous studies have been carried out to improve the quality of this technology.


2020 ◽  
Vol 22 (4) ◽  
pp. 895-908
Author(s):  
M. Ouhsti ◽  
B. El Haddadi ◽  
S. Belhouideg

Abstract3D polymer-based printers have become easily accessible to the public. Usually, the technology used by these 3D printers is Fused Deposition Modelling (FDM). The majority of these 3D printers mainly use acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA) to fabricate 3D objects. In order for the printed parts to be useful for specific applications, the mechanical properties of the printed parts must be known. The aim of this study is to determine the tensile strength and elastic modulus of printed materials in polylactic acid (PLA) according to three important printing parameters such as deposition angle, extruder temperature and printing speed. The central composite design (CCD) was used to reduce the number of tensile test experiments. The obtained results show that the mechanical properties of printed parts depend on printing parameters. Empirical models relating response and process parameters are developed. The analysis of variance (ANOVA) was used to test the validity of models relating response and printing parameters. The optimal printing parameters are determined for the desired mechanical properties.


Author(s):  
Timoumi Mohamed ◽  
Najoua Barhoumi ◽  
Khalid Lamnawar ◽  
Abderrahim Maazouz ◽  
Amna Znaidi

The interesting mechanical properties of polyether ether ketone give the material a place among the foremost competitors when it comes to replacing metal. Fused deposition modeling has been recognized as an alternative method to process polyether ether ketone parts. In this study, the effect of different process parameters such as nozzle, bed, and radiant temperatures as well as printing speed and layer thickness on the tensile properties of three-dimensional printed polyether ether ketone was investigated. The optimization of the tensile properties of PEEK were studied by performing a reduced number of experiments, using the experimental design method based on the Taguchi approach which limits the number of experiments to 8 instead of 32. Results showed that a decent Young’s modulus was found by setting the nozzle temperature, print speed, and bed temperatures to their high levels and by setting the layer thickness and radiant temperature to their low level. Using these parameters, a Young’s modulus of 3.5 GPa was obtained, which represents 87.5% of the value indicated in the technical sheet. With these settings, we also found a tensile strength of 45.5 MPa, which corresponds to 46.4% of the value given by the studied polyether ether ketone material. A scanning electron microscopic investigation of the porosity and interlayer adhesion, confirmed that a higher bed temperature also tended to promote adhesion between layers.


2021 ◽  
Vol 2057 (1) ◽  
pp. 012106
Author(s):  
L E Vendland ◽  
V V Volkov-Muzylev ◽  
A N Demidov ◽  
A S Pugachuk

Abstract The article presents the research of adhesive properties of various polymers used in additive manufacturing by fused deposition modeling. Tensile tests of additively manufactured samples of various polymers are carried out, electro-microscopic photographs of the working area are taken before and after tests, and studies on the manufacturability of printing are performed to exclude further typical errors identified during these tests. Samples of the following polymers are studied: thermoplastic resin acrylonitrile butadiene styrene (ABS +), thermoplastic resin acrylonitrile butadiene styrene with the addition of titanium nitrite as a dye (ABS + TiN), thermoplastic resin acrylonitrile butadiene styrene with the addition of polyester inserts (ABS polylactide (PLA), polylactide based compound (PLA HP), thermoplastic polyethylene terephthalate glycol (PETG), and nylon with carbon inserts (NSC). The work reveals the advantages and disadvantages of the investigated plastics. For example, deformations occur when the part is cooled down during printing process of ABS +, and a crack could form in stress concentrators as a result of the influence of cold air flows.


2021 ◽  
Author(s):  
M. Hossein Sehhat ◽  
Ali Mahdianikhotbesara ◽  
Farzad Yadegari

Abstract Additive Manufacturing (AM) can be deployed for space exploration purposes, such as fabricating different components of robots’ bodies. The produced AM parts should have desirable thermal and mechanical properties to withstand the extreme environmental conditions, including the severe temperature variations on moon or other planets which cause changes in parts’ strengths and may fail their operation. Therefore, the correlation between operational temperature and mechanical properties of AM fabricated parts should be evaluated. In this study, three different types of polymers, including polylactic acid (PLA), polyethylene terephthalate glycol (PETG), and acrylonitrile butadiene styrene (ABS), were used in Fused Deposition Modeling (FDM) process to fabricate several parts. The mechanical properties of produced parts were then investigated at various temperatures to generate knowledge on the correlation between temperature and type of material. When varying the operational temperature during tensile tests, the material’s glass transition temperature was found influential in determining the type of material failure. Among the materials used, ABS showed the best mechanical properties at all temperatures due to its highest glass transmission temperatures. The results of statistical analysis indicated the temperature as the significant factor on tensile strength while the change in material did not show a significant effect.


Sign in / Sign up

Export Citation Format

Share Document