scholarly journals Developing the Automatic Control System Based on Neural Controller

2015 ◽  
Vol 44 (3) ◽  
pp. 262-270 ◽  
Author(s):  
Jun Su ◽  
Markiyan Nakonechnyi ◽  
Orest Ivakhiv ◽  
Anatoliy Sachenko

Mostly the dynamics of controlled objects is often described by nonlinear equalizations. Last years themethodology of neural networks is engaged into designing the systems controlling such objects, in particular due to theinfluence of nonlinearities can be taken into account by nonlinear functions of the activation. Such methodology brings someintelligence to the designed system.Authors proposed the purposeful procedure of forming the structure of the neural controller according the desired lawof the control using the discrete transformation of the motion equation. Requirements to the mathematical model of thereference and method of network training are determined, and the control quality is estimated at traditional passing thedisagreement error in the controller input and for the proposed new configuration of its input circuit, namely with separatedinputs. Simulation results confirmed providing the better quality of the system control.DOI: http://dx.doi.org/10.5755/j01.itc.44.3.7717

2014 ◽  
Vol 945-949 ◽  
pp. 777-780
Author(s):  
Tao Liu ◽  
Yong Xu ◽  
Bo Yuan Mao

Firstly, according to the structure characteristics of precision centrifuge, the mathematical model of its dynamic balancing system was set up, and the dynamic balancing scheme of double test surfaces, double emendation surfaces were established. Then the dynamic balance system controller of precision centrifuge was designed. Simulation results show that the controller designed can completely meet the requirements of precision centrifuge dynamic balance control system.


2015 ◽  
Vol 778 ◽  
pp. 259-263
Author(s):  
Fa Jun Zhang ◽  
Lin Zi Li ◽  
Hui Lin ◽  
Yin Lin Pu ◽  
Zhu Xin

Various uncertain factors affect the movement of the welding robot, thus welding gun tend to deviate from the theory of welding position which reduces the welding accuracy, of which the revolute pair clearance have an greater effect on the movement of the welding robot. In order to study the influence of revolute pair clearance to the end pose accuracy of welding robot, the mathematical model of revolute pair clearance was established, and the software SolidWorks was used for establishing the welding robot model, making simulations of the mechanical arm with joint clearance and no joint clearance. At last, the movement characteristic of the hinge shaft is attained. The simulation results showed that the shaft velocity and displacement of mechanical arm with joint clearance has a certain degree of fluctuation, which affecting the end pose accuracy of welding robot , and reducing the movement stability and the welding accuracy of welding robot.


2021 ◽  
Vol 316 ◽  
pp. 661-666
Author(s):  
Nataliya V. Mokrova

Current cobalt processing practices are described. This article discusses the advantages of the group argument accounting method for mathematical modeling of the leaching process of cobalt solutions. Identification of the mathematical model of the cascade of reactors of cobalt-producing is presented. Group method of data handling is allowing: to eliminate the need to calculate quantities of chemical kinetics; to get the opportunity to take into account the results of mixed experiments; to exclude the influence of random interference on the simulation results. The proposed model confirms the capabilities of the group method of data handling for describing multistage processes.


Author(s):  
Felipe Ribolla Masetti ◽  
Pedro Cardozo de Mello ◽  
Guilherme F. Rosetti ◽  
Eduardo A. Tannuri

This paper presents small-scale low-speed maneuvering tests with an oceanographic research vessel and the comparison with mathematical model using the real time maneuvering simulator developed by the University of São Paulo (USP). The tests are intended to verify the behavior of the vessel and the mathematical model under transient and low speed tests. The small-scale tests were conducted in deep and shallow waters, with a depth-draft ratio equal to 1.28, in order to verify the simulator ability to represent the vessel maneuverability on both depth conditions. The hydrodynamic coefficients used in the simulator model were obtained by CFD calculations and wind tunnel model tests carried out for this vessel. Standard turning circle and accelerating turn maneuvers were used to compare the experimental and numerical results. A fair agreement was achieved for shallow and deep water. Some differences were observed mainly in the initial phase of the accelerating turn test.


2021 ◽  
Vol 6 (2) ◽  
pp. 83-88
Author(s):  
Asmaidi As Med ◽  
Resky Rusnanda

Mathematical modeling utilized to simplify real phenomena that occur in everyday life. Mathematical modeling is popular to modeling the case of the spread of disease in an area, the growth of living things, and social behavior in everyday life and so on. This type of research is included in the study of theoretical and applied mathematics. The research steps carried out include 1) constructing a mathematical model type SEIRS, 2) analysis on the SEIRS type mathematical model by using parameter values for conditions 1and , 3) Numerical simulation to see the behavior of the population in the model, and 4) to conclude the results of the numerical simulation of the SEIRS type mathematical model. The simulation results show that the model stabilized in disease free quilibrium for the condition  and stabilized in endemic equilibrium for the condition .


Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 57-62 ◽  
Author(s):  
Sebastian Różowicz

Abstract The paper presents the results of analytical and experimental studies concerning the influence of different kinds of fuel additives on the quality of the spark discharge for different configurations of the ignition system. The wear of the spark plug electrode and the value of spark discharge were determined for various impurities and configurations of the air-fuel mixture.


2021 ◽  
pp. 200-206
Author(s):  
I.N. Sedinin ◽  
V.F. Makarov

It is considered the complex of operations of the technological process for the heat treatment of steel 95X18-Sh, as a result of which the material of the samples increases the hardness to 59...61 HRC, and also improves the physical and mechanical properties. A full-scale full factorial experiment of face milling of samples was carried out using the method of mathematical planning. In the experiments, a high-precision machine and a carbide cutting tool were used. To calculate the values of the roughness function, the following are taken as independent variables: cutting speed, feed per tooth and depth of cut. In order to determine the coefficients of the linear equation, a central compositional orthogonal plan of the second order for three factors was used. A matrix of levels of variation of independent variable factors and a matrix of experiment planning were compiled. A regression analysis of the obtained experimental statistical data was carried out using the Microsoft Excel, Statistica and Wolfram Alpha programs. As a result of the calculations, a mathematical model of the roughness of the machined surface and optimal cutting conditions were determined.


2021 ◽  
pp. 68-72
Author(s):  
Il'ya A. Meshchikhin ◽  
Sergej S. Gavryushin

As part of the development of monitoring systems for the operation of technical objects, the problem of improving the quality of monitoring systems for the loaded state is considered. Based on the analysis of the mathematical model of the structure and its loading, a methodology for the selection of measuring instruments was developed. The urgency of the problem of calculating substantiation of the choice of key points of the structure is shown, at which it is possible to measure deformations for the subsequent restoration of the existing loads with maximum accuracy. An approach based on the envelope method for determining the rational composition of measuring instruments for restoring the loads acting on the structure is stated.


Author(s):  
Satya Swesty Widiyana ◽  
Rus Indiyanto

ABSTRACTThis study was taken from the problems in Heaven Store ranging from turnover does not reach the target, the different display products for each branch, and a just few reference customer visiting from problems in customer satisfaction. because the values of input and output obtained from each branch has a different values so demanding customers Heaven Store to correct weaknesses in the efficiency of customer service and satisfaction, then we tried to respond to the challenges of these improvements to the study "Analysis of Measurement Efficiency Services Methods Data envelopment analysis (DEA) In Heaven Store in West Surabaya "So in this study, researchers will assist the managementHeaven Store for measuring the level of efficiency that Heaven store along 5th branches can improve the quality of service by using data envelopment analysis (DEA), which is a methods that determine the level of efficiency similar organization where efficiency is not determined by the organization concerned. It is hoped this analysis will help the management to withdraw the customer so that the customer can buy the products that are sold in Heaven Store. After calculation of the mathematical model by referring to the calculation of the mathematical model DEA CRS, obtained the efficiency 0.8479688 on the fifth branch Heaven Store, then after an improvement in input and output according to the reference fixes the target model of DEA CRS, then the value of the relative efficiency DMU 5 can be increased from 0.8479688 (inefficient) to 1.000000 (efficient). Keywords: Data Envelopment Analysis, customer satisfaction, efficiency


Author(s):  
Sandesh Mahamure ◽  
Poonam N. Railkar ◽  
Parikshit N. Mahalle

Now we are in the era of ubiquitous computing. Internet of things (IoT) is getting matured in various parts of the world. In coming few years' billions and trillions of things will be connected to the internet. To deal with these huge number of devices in a network we need to consider Quality of Service (QoS)parameters so that system operations can be performed in a smoother way. Mathematical modelling of these QoS parameters gives an idea about which factors are needs to consider while designing any IoT-enabled system at the same time it will give the performance analysis of the system before implementation. In this paper comprehensive literature survey is done to discuss various issues related to QoS and gap analysis is also done for IoT Enabled systems. This paper proposes general steps to build a mathematical model for a system. It also proposes the mathematical model for QoS parameters like reliability, communication complexities, latency and aggregation of data for IoT. To support proposed mathematical model proof of concept also given.


Sign in / Sign up

Export Citation Format

Share Document