scholarly journals Investigation on the Mechanical Properties of MRE Compounds

Machines ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 36 ◽  
Author(s):  
Renato Brancati ◽  
Giandomenico Di Massa ◽  
Stefano Pagano

This paper describes an experimental investigation conducted on magneto-rheological elastomers (MREs) with the aim of adopting these materials to make mounts to be used as vibration isolators. These materials, consisting of an elastomeric matrix containing ferromagnetic particles, are considered to be smart materials, as it is possible to control their mechanical properties by means of an applied magnetic field. In the first part of the paper, the criteria adopted to define the characteristics of the material and the experimental procedures for making samples are described. The samples are subjected to a compressive static test and are then, adopting a testing machine specially configured, tested for shear periodic loads, each characterized by a different constant compressive preload. The testing machine is equipped with a coil, with which it is possible to vary the intensity of the magnetic field crossing the sample during testing to evaluate the magneto-rheological effect on the materials’ characteristics in terms of stiffness and damping.

2020 ◽  
Vol 10 (14) ◽  
pp. 4899 ◽  
Author(s):  
Sneha Samal ◽  
Marcela Škodová ◽  
Lorenzo Abate ◽  
Ignazio Blanco

Magneto-rheological elastomer (MRE) composites belong to the category of smart materials whose mechanical properties can be governed by an external magnetic field. This behavior makes MRE composites largely used in the areas of vibration dampers and absorbers in mechanical systems. MRE composites are conventionally constituted by an elastomeric matrix with embedded filler particles. The aim of this review is to present the most outstanding advances on the rheological performances of MRE composites. Their distribution, arrangement, wettability within an elastomer matrix, and their contribution towards the performance of mechanical response when subjected to a magnetic field are evaluated. Particular attention is devoted to the understanding of their internal micro-structures, filler–filler adhesion, filler–matrix adhesion, and viscoelastic behavior of the MRE composite under static (valve), compressive (squeeze), and dynamic (shear) mode.


2013 ◽  
Vol 7 (3) ◽  
pp. 131-134 ◽  
Author(s):  
Mirosław Bocian ◽  
Jerzy Kaleta ◽  
Daniel Lewandowski ◽  
Michał Przybylski

Abstract Magnetorheological elastomers (MRE) are “SMART” materials that change their mechanical properties under influence of magnetic field. Thanks to that ability it is possible to create adaptive vibration dampers based on the MRE. To test vibration damping abilities of this material special test stand is required. This article presents design concept for such test stand with several options of testing.


2012 ◽  
Vol 430-432 ◽  
pp. 1979-1983
Author(s):  
Wei Bang Feng ◽  
Xue Yang ◽  
Zhi Qiang Lv

Magneto-rheological elastomer( MR elastomer) is an emerging intelligent material made up of macromolecule polymer and magnetic particles. While a promising wide application it has in the fields of warships vibration controlling for its controllable mechanical, electrical and magnetic properties by external magnetic field, design and application of devices based on it are facing great limitations imposed by its poor performance in mechanical properties and magneto effect. Aiming at developing a practical MR elastomer, a new confecting method was proposed in this paper. Then, following this new method and using a specificly designed solidifying matrix, an amido- polyester MR elastomer was developed with its mechanical property systemically explored.


2007 ◽  
Vol 546-549 ◽  
pp. 1673-1676 ◽  
Author(s):  
Wei Jia Meng ◽  
Zhan Wen Huang ◽  
Yan Ju Liu ◽  
Xiao Rong Wu ◽  
Yi Sun

Magnetorheological (MR) fluids are suspensions of micron sized ferromagnetic particles dispersed in varying proportions of a variety of non-ferromagnetic fluids. MR fluids exhibit rapid, reversible and significant changes in their rheological (mechanical) properties while subjected to an external magnetic field. In this paper, a double-plate magneto-rheological fluid (MRF) clutch with controllable torque output have been designed. Electromagnetic finite element analysis is used to optimize the design of the clutch by using the commercial FEA software ANSYS.


2018 ◽  
Vol 144 ◽  
pp. 01007
Author(s):  
K Praveen Shenoy ◽  
Abhishek Kumar Singh ◽  
K Sai Aditya Raman ◽  
K. V. Gangadharan

Rotating systems suffer from lateral and torsional vibrations which have detrimental effect on the roto-dynamic performance. Many available technologies such as vibration isolators and vibration absorbers deal with the torsional vibrations to a certain extent, however passive isolators and absorbers find less application when the input conditions are dynamic. The present work discusses use of a smart material called as Magneto Rheological Elastomer (MRE), whose properties can be changed based on magnetic field input, as a potential isolator for torsional vibrations under dynamic loading conditions. Carbonyl Iron Particles (CIP) of average size 5 μm were mixed with RTV Silicone rubber to form the MRE. The effect of magnetic field on the system parameters was comprehended under impulse loading conditions using a custom built in-house system. Series arrangement of accelerometers were used to differentiate between the torsional and the bending modes of vibration of the system. Impact hammer tests were carried out on the torsional system to study its response, in the presence and absence of magnetic field. The tests revealed a shift in torsional frequency in the presence of magnetic field which elucidates the ability of MRE to work as a potential vibration isolator for torsional systems.


2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Peng Zhang ◽  
Kwang-Hee Lee ◽  
Chul-Hee Lee

A magnetorheological fluid (MRF) is one of many smart materials that can be changed their rheological properties. The stiffness and damping characteristics of MRF can be changed when a magnetic field is applied. This technology has been successfully employed in various low and high volume applications, such as dampers, clutches, and active bearings, which are already in the market or are approaching production. As a result, the sealing performance of MRF has become increasingly important. In this study, the wear properties of seals with MRFs were evaluated by a rotary-type lip seal wear tester. The test was performed with and without a magnetic field. The leakage time was monitored during the tests in typical engine oil conditions. The results showed that the wear resistance of the seal with MRF was decreased under the magnetic field.


2018 ◽  
Vol 24 (3) ◽  
pp. 738-747
Author(s):  
M Šilhavý

The recent renewal of interest in nonlinear electromagnetoelastic interactions comes from the technological importance of electro- or magnetosensitive elastomers, smart materials whose mechanical properties change instantly on the application of an electric or magnetic field. We consider materials with free energy functions of the form [Formula: see text], where F is the deformation gradient, d is the electric displacement, and b is the magnetic induction. It was recently shown by the author that such an energy function is polyconvex if and only if it is of the form [Formula: see text] where [Formula: see text] is a convex function (of 31 scalar variables). Moreover, an existence theorem was proved for the equilibrium solution for a system consisting of a polyconvex electromagnetoelastic solid plus the vacuum electromagnetic field outside the body. The condition (8), is not just the combination of Ball’s polyconvexity of elastomers [Formula: see text] with the convexity in the electromagnetic variables. The differential constraints div [Formula: see text], div [Formula: see text] allow for the cross mechanical–electric and mechanical–magnetic terms Fd and Fb which substantially enlarge the class of energies covered by the theory. The result (*), applies to a material of any symmetry; this paper analyzes the condition in the case of isotropic materials. A broad sufficient condition for the polyconvexity is given in that case. Further, it is shown that the commonly used isotropic electroelastic or magnetoelastic invariants are polyconvex except for the biquadratic ones; the paper explicitly determines their quasiconvex envelopes and shows that they are polyconvex.


2019 ◽  
Vol 895 ◽  
pp. 152-157 ◽  
Author(s):  
B. Narasimha Rao ◽  
A. Seshadri Sekhar

Magneto Rheological (MR) fluids are a class of smart materials where the shear stress is not directly proportional to rate of shear. The viscosity of fluid changes as magnetic field changes and hence this phenomenon is very useful in bearing-rotor system for attenuating the vibrations. In the present study the application of MR fluid as lubricant instead of Newtonian fluid in the journal bearing is explored through steady state, dynamic characteristics and stability. MR fluid film has been modeled as per Bingham rheological model. FEM with three node triangular elements has been used to solve the Reynolds equation both for the Newtonian fluid film and MR fluid film. The results show the load carrying capacity in the case of MR fluid journal bearing is higher than that of using the Newtonian fluid. The load carrying capacity increases with the increasing magnetic field for all eccentricity ratios. The results also show better stability of the bearing using MR fluid at higher eccentricity ratios. The unbalance response of the rotor mounted on the journal bearing using MR fluid is also estimated to be lower than that of with the Newtonian fluid.


2018 ◽  
Vol 29 (10) ◽  
pp. 2051-2095 ◽  
Author(s):  
Raju Ahamed ◽  
Seung-Bok Choi ◽  
Md Meftahul Ferdaus

Smart materials are kinds of designed materials whose properties are controllable with the application of external stimuli such as the magnetic field, electric field, stress, and heat. Smart materials whose rheological properties are controlled by externally applied magnetic field are known as magneto-rheological materials. Magneto-rheological materials actively used for engineering applications include fluids, foams, grease, elastomers, and plastomers. In the last two decades, magneto-rheological materials have gained great attention of researchers significantly because of their salient controllable properties and potential applications to various fields such as automotive industry, civil environment, and military sector. This article offers a recent progressive review on the magneto-rheological materials technology, especially focusing on numerous application devices and systems utilizing magneto-rheological materials. Conceivable limitations, challenges, and comparable advantages of applying these magneto-rheological materials in various sectors are analyzed critically, which provides a clear pathway to the researchers in selecting and utilizing these materials. The review starts with an introduction to the elementary description of magneto-rheological materials and their significant contribution in various fields. Following this, different types of the magneto-rheological materials, modeling of the magneto-rheological materials, magneto-rheological material–based devices, and their applications have been extensively reviewed to promote practical use of magneto-rheological materials in a wide spectrum of the application from the automobile to medical device.


2015 ◽  
Vol 1095 ◽  
pp. 483-489
Author(s):  
Kwang Hee Lee ◽  
Kyung Sik Jung ◽  
Chul Hee Lee

This study examines the relation between the thickness of a specimen and the weight of an impactor for evaluating the shock absorption performance of magneto-rheological (MR) elastomers with and without a magnetic field. The shock absorption performance can be evaluated by calculating impact energy. The MR elastomer is a smart material and its mechanical properties change under the influence of a magnetic field. The drop impact test is performed to evaluate the amount of shock absorption of the MR elastomer for each test condition. Tests are also performed by varying the magnetic field during impact to improve the shock absorption performance of the MR elastomer, which is related to impact load. The results show a better shock absorption performance with a thicker MR elastomer, lighter impactor, and without a magnetic field. Also, the magnitude of impact and the time duration for stabilization are improved when the magnetic field is varied during the test.


Sign in / Sign up

Export Citation Format

Share Document