scholarly journals CAD-Based 3D-FE Modelling of AISI-D3 Turning with Ceramic Tooling

Machines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 4
Author(s):  
Panagiotis Kyratsis ◽  
Anastasios Tzotzis ◽  
Angelos Markopoulos ◽  
Nikolaos Tapoglou

In this study, the development of a 3D Finite Element (FE) model for the turning of AISI-D3 with ceramic tooling is presented, with respect to four levels of cutting speed, feed, and depth of cut. The Taguchi method was employed in order to create the orthogonal array according to the variables involved in the study, reducing this way the number of the required simulation runs. Moreover, the possibility of developing a prediction model based on well-established statistical tools such as the Response Surface Methodology (RSM) and the Analysis of Variance (ANOVA) was examined, in order to further investigate the relationship between the cutting speed, feed, and depth of cut, as well as their influence on the produced force components. The findings of this study point out an increased correlation between the experimental results and the simulated ones, with a relative error below 10% for most tests. Similarly, the values derived from the developed statistical model indicate a strong agreement with the equivalent numerical values due to the verified adequacy of the statistical model.

2020 ◽  
Vol 66 (7-8) ◽  
pp. 467-478 ◽  
Author(s):  
Anastasios Tzotzis ◽  
César García-Hernández ◽  
José-Luis Huertas-Talón ◽  
Panagiotis Kyratsis

Hard turning is one of the most used machining processes in industrial applications. This paper researches critical aspects that influence the machining process of AISI-4140 to develop a prediction model for the resultant machining force-induced during AISI-4140 hard turning, based on finite element (FE) modelling. A total of 27 turning simulation runs were carried out in order to investigate the relationship between three key parameters (cutting speed, feed rate, and depth of cut) and their effect on machining force components. The acquired numerical results were compared to experimental ones for verification purposes. Additionally, a mathematical model was established according to statistical methodologies such as the response surface methodology (RSM) and the analysis of variance (ANOVA). The plurality of the simulations yielded results in high conformity with the experimental values of the main machining force and its components. Specifically, the resultant cutting force agreement exceeded 90 % in many tests. Moreover, the verification of the adequacy of the statistical model led to an accuracy of 8.8 %.


Micromachines ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 798 ◽  
Author(s):  
Anastasios Tzotzis ◽  
César García-Hernández ◽  
José-Luis Huertas-Talón ◽  
Panagiotis Kyratsis

The present study investigated the performance of three ceramic inserts in terms of the micro-geometry (nose radius and cutting edge type) with the aid of a 3D finite element (FE) model. A set of nine simulation runs was performed according to three levels of cutting speed and feed rate with respect to a predefined depth of cut and tool nose radius. The yielded results were compared to the experimental values that were acquired at identical cutting conditions as the simulated ones for verification purposes. Consequently, two more sets of nine simulations each were carried out so that a total of 27 turning simulation runs would adduce. The two extra sets corresponded to the same cutting conditions, but to different cutting tools (with varied nose radius). Moreover, a prediction model was established based on statistical methodologies such as the response surface methodology (RSM) and the analysis of variance (ANOVA), further investigating the relationship between the critical parameters (cutting speed, feed rate, and nose radius) and their influence on the generated turning force components. The comparison between the experimental values of the cutting force components and the simulated ones demonstrated an increased correlation that exceeded 89%. Similarly, the values derived from the statistical model were in compliance with the equivalent FE model values due to the verified adequacy.


2013 ◽  
Vol 4 (1) ◽  
pp. 63-68 ◽  
Author(s):  
Zs. Kun ◽  
I. G. Gyurika

Abstract The stone products with different sizes, geometries and materials — like machine tool's bench, measuring machine's board or sculptures, floor tiles — can be produced automatically while the manufacturing engineer uses objective function similar to metal cutting. This function can minimise the manufacturing time or the manufacturing cost, in other cases it can maximise of the tool's life. To use several functions, manufacturing engineers need an overall theoretical background knowledge, which can give useful information about the choosing of technological parameters (e.g. feed rate, depth of cut, or cutting speed), the choosing of applicable tools or especially the choosing of the optimum motion path. A similarly important customer's requirement is the appropriate surface roughness of the machined (cut, sawn or milled) stone product. This paper's first part is about a five-month-long literature review, which summarizes in short the studies (researches and results) considered the most important by the authors. These works are about the investigation of the surface roughness of stone products in stone machining. In the second part of this paper the authors try to determine research possibilities and trends, which can help to specify the relation between the surface roughness and technological parameters. Most of the suggestions of this paper are about stone milling, which is the least investigated machining method in the world.


2014 ◽  
Vol 2 (4) ◽  
Author(s):  
Jing Shi ◽  
Chunhui Ji ◽  
Yachao Wang ◽  
Steve Hsueh-Ming Wang

Three-dimensional (3D) molecular dynamics (MD) simulation is performed to study the tool/chip interface friction phenomenon in machining of polycrystalline copper at atomistic scale. Three polycrystalline copper structures with the equivalent grain sizes of 12.25, 7.72, and 6.26 nm are constructed for simulation. Also, a monocrystalline copper structure is simulated as the benchmark case. Besides the grain size, the effects of depth of cut, cutting speed, and tool rake angle are also considered. It is found that the friction force and normal force distributions along the tool/chip interface in both polycrystalline and monocrystalline machining exhibit similar patterns. The reduction in grain size overall increases the magnitude of normal force along the tool/chip interface, but the normal forces in all polycrystalline cases are smaller than that in the monocrystalline case. In atomistic machining of polycrystalline coppers, the increase of depth of cut consistently increases the normal force along the entire contact area, but this trend cannot be observed for the friction force. In addition, both higher cutting speed and more negative tool rake angle do not bring significant changes to the distributions of normal and friction forces on the interface, but both factors tend to increase the magnitudes of the two force components.


Author(s):  
Do Thi Kim Lien ◽  
Nguyen Dinh Man ◽  
Phung Tran Dinh

In this paper, an experimental study on the effect of cutting parameters on surface roughness was conducted when milling X12M steel. The cutting tool used in this study is a face milling cutter. The material that is used to make the insert is the hard alloy T15K6. The cutting parameters covered in this study include the cutting speed, the feed rate and depth of cut. The experiments are performed in the form of a rotating center composite design. The analysis shows that for both Ra and Rz: (1) the feed rate has the greatest influence on the surface roughness while the depth of cut, the cutting speed has a negligible effect on the surface roughness. (2) only the interaction between the feed rate and the depth of the cut has a significant effect on both Ra and Rz while the interaction between the cutting speed and the feed rate, the interaction between the cutting speed and the depth of cut have a negligible effect on surface roughness. A regression equation showing the relationship between Ra, Rz, and cutting parameters has also been built in this study.


2018 ◽  
Vol 14 (1) ◽  
pp. 67-76
Author(s):  
Mohanned Mohammed H. AL-Khafaji

The turning process has various factors, which affecting machinability and should be investigated. These are surface roughness, tool life, power consumption, cutting temperature, machining force components, tool wear, and chip thickness ratio. These factors made the process nonlinear and complicated. This work aims to build neural network models to correlate the cutting parameters, namely cutting speed, depth of cut and feed rate, to the machining force and chip thickness ratio. The turning process was performed on high strength aluminum alloy 7075-T6. Three radial basis neural networks are constructed for cutting force, passive force, and feed force. In addition, a radial basis network is constructed to model the chip thickness ratio. The inputs to all networks are cutting speed, depth of cut, and feed rate. All networks performances (outputs) for all machining force components (cutting force, passive force and feed force) showed perfect match with the experimental data and the calculated correlation coefficients were equal to one. The built network for the chip thickness ratio is giving correlation coefficient equal one too, when its output compared with the experimental results. These networks (models) are used to optimize the cutting parameters that produce the lowest machining force and chip thickness ratio. The models showed that the optimum machining force was (240.46 N) which can be produced when the cutting speed (683 m/min), depth of cut (3.18 mm) and feed rate (0.27 mm/rev). The proposed network for the chip thickness ratio showed that the minimum chip thickness is (1.21), which is at cutting speed (683 m/min), depth of cut (3.18 mm) and feed rate (0.17 mm/rev).


2016 ◽  
Vol 852 ◽  
pp. 304-310
Author(s):  
M.M. Thamizharasan ◽  
Y.J. Nithiya Sandhiya ◽  
K.S. Vijay Sekar ◽  
V.V. Bhanu Prasad

The application of Metal Matrix Composite (MMC) has been increasing due to its superior strength and wear characteristics but the major challenge is its poor machinability due to the presence of reinforcement in the matrix which is a hindrance during machining. The material behaviour during machining varies with respect to input variables. In this paper the effect of cutting speed during the orthogonal turning of A359/SiCp MMC with TiAlN tool insert is analysed by developing a 2D Finite Element (FE) model in Abaqus FEA code. The FE model is based on plane strain formulation and the element type used is coupled temperature displacement. The matrix material is modeled using Johnson–Cook (J-C) thermal elastic–plastic constitutive equation and chip separation is simulated using Johnson–Cook’s model for progressive damage and fracture with parting line. Particle material is considered to be perfectly elastic until brittle fracture. The tool is considered to be rigid. The FE model analyses the tool interaction with the MMC and its subsequent effects on cutting forces for different cutting speeds and feed rates. The chip formation and stress distribution are also studied. The FE results are validated with the experimental results at cutting speeds ranging from 72 – 188 m/min and feed rates ranging from 0.111 – 0.446 mm/rev at constant depth of cut of 0.5mm.


2010 ◽  
Vol 139-141 ◽  
pp. 782-787
Author(s):  
Yue Ding ◽  
Wei Liu ◽  
Xi Bin Wang ◽  
Li Jing Xie ◽  
Jun Han

In this study, surface roughness generated by face milling of 38CrSi high-strength steel is discussed. Experiments based on 24 factorial design and Box-Behnken design method are conducted to investigate the effects of milling parameters (cutting speed, axial depth of cut and radial depth of cut and feed rate) on surface roughness, and a second-order model of surface roughness is established by using surface response methodology (RSM); Significance tests of the model are carried out by the analysis of variance (ANOVA). The results show that the most important cutting parameter is feed rate, followed by radial depth of cut, cutting speed and axial depth of cut. Moreover, it is verified that the predictive model possesses highly significance by the variance examination at a level of confidence of 99%. And the relationship between surface roughness and the important interaction terms is nonlinear.


2013 ◽  
Vol 753-755 ◽  
pp. 323-332
Author(s):  
Yunn Shiuan Liao ◽  
Chin Nan Chen

The cutting of precision threads is an important manufacturing process. Several passes are needed to complete the cutting of a thread and the choice of appropriate cutting speed and depth of cut for each cutting pass is essential. The cutting efficiency and tool life are significantly affected by these two parameters, especially when cutting threads in difficult-to-cut materials, such as titanium alloy. This paper proposes the concept of an equal undeformed chip area for all cutting passes, in order to determine the depth of cut for each pass. The principal goal is to maintain the same cutting force throughout the cutting process. Using tool geometry, the relationship between the cumulative depth of cut and the undeformed chip area for each cutting pass are derived. The depth of cut of each corresponding cutting pass can be determined, once the dimensions of the thread and the number of cutting passes are specified. Experiments were conducted to cut an ISO metric screw thread, with a pitch of 0.5 mm, on a 40 mm in diameter bar. It was found that, for the same total number of cutting passes, the tool wear was less than that suggested by the tool makers, when a depth of cut for each pass was determined using the proposed method. The thread could be cut using a higher cutting speed, resulting in a much shorter machining time. In addition, the proposed strategy also allowed completion of cutting using less cutting passes. A 25% increase in efficiency was noted for the specific thread used in the experiment.


2021 ◽  
Vol 9 ◽  
Author(s):  
Anis Fatima ◽  
◽  
Muhammad Wasif ◽  
Muhammad Omer Mumtaz ◽  
◽  
...  

Metal cutting operations involve intense heat generation owing to plastic deformation of the work piece and due to friction at the tool-work piece and tool-chip interface. The heat generated in metal cutting unfavourably affects the quality and thus the functional performance of the product. It is known that quality and functional performance is the function of roughness and dimensional accuracy. To maintain a longer component life, along with the robust material choice, a component should have good surface finish and dimensional accuracy. While, for the organization to monitor and control their environmental issues in a holistic manner, emphasis in adopting eco-friendly practices and protecting environment has been growing continuously across all the business sectors. In this study, an attempt is made to optimize the process parameter of stainless steel AISI-410 alloy, a nuclear graded material, for better surface finish. For this, Taguchi L9 orthogonal array was utilise to identify the process parameter and cutting environment. Analysis of variance (ANOVA) was also conducted to highlight the significant parameter that affects the surface finish most. A statistical model to forecast the surface roughness was also developed and was validated by an experiment with a maximum error of 12%. Results indicates that feed rate is the most critical factor that effects the surface roughness with the contribution of 91.5%, followed by environment with 5.22% contribution, cutting speed and depth of cut with 2.7 % and 0.4 % respectively. The correlation coefficient of 0.9213 and conformation tests reveals that developed statistical model predicts surface roughness with the statistical error limit.


Sign in / Sign up

Export Citation Format

Share Document