scholarly journals Influence of Single- and Multi-Wall Carbon Nanotubes on Magnetohydrodynamic Stagnation Point Nanofluid Flow over Variable Thicker Surface with Concave and Convex Effects

Mathematics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 104 ◽  
Author(s):  
Anum Shafiq ◽  
Ilyas Khan ◽  
Ghulam Rasool ◽  
El-Sayed M. Sherif ◽  
Asiful H. Sheikh

This paper reports a theoretical study on the magnetohydrodynamic flow and heat exchange of carbon nanotubes (CNTs)-based nanoliquid over a variable thicker surface. Two types of carbon nanotubes (CNTs) are accounted for saturation in base fluid. Particularly, the single-walled and multi-walled carbon nanotubes, best known as SWCNTs and MWCNTs, are used. Kerosene oil is taken as the base fluid for the suspension of nanoparticles. The model involves the impact of the thermal radiation and induced magnetic field. However, a tiny Reynolds number is assumed to ignore the magnetic induction. The system of nonlinear equations is obtained by reasonably adjusted transformations. The analytic solution is obtained by utilizing a notable procedure called optimal homotopy analysis technique (O-HAM). The impact of prominent parameters, such as the magnetic field parameter, Brownian diffusion, Thermophoresis, and others, on the dimensionless velocity field and thermal distribution is reported graphically. A comprehensive discussion is given after each graph that summarizes the influence of the respective parameters on the flow profiles. The behavior of the friction coefficient and the rate of heat transfer (Nusselt number) at the surface (y = 0) are given at the end of the text in tabular form. Some existing solutions of the specific cases have been checked as the special case of the solution acquired here. The results indicate that MWCNTs cause enhancement in the velocity field compared with SWCNTs when there is an increment in nanoparticle volume fraction. Furthermore, the temperature profile rises with an increment in radiation estimator for both SWCNT and MWCNT and, finally, the heat transfer rate lessens for increments in the magnetic parameter for both types of nanotubes.

Nanomaterials ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 449 ◽  
Author(s):  
Ali J. Chamkha ◽  
Fatih Selimefendigil ◽  
Hakan F. Oztop

Effects of a rotating cone in 3D mixed convection of CNT-water nanofluid in a double lid-driven porous trapezoidal cavity is numerically studied considering magnetic field effects. The numerical simulations are performed by using the finite element method. Impacts of Richardson number (between 0.05 and 50), angular rotational velocity of the cone (between −300 and 300), Hartmann number (between 0 and 50), Darcy number (between 10 − 4 and 5 × 10 − 2 ), aspect ratio of the cone (between 0.25 and 2.5), horizontal location of the cone (between 0.35 H and 0.65 H) and solid particle volume fraction (between 0 and 0.004) on the convective heat transfer performance was studied. It was observed that the average Nusselt number rises with higher Richardson numbers for stationary cone while the effect is reverse for when the cone is rotating in clockwise direction at the highest supped. Higher discrepancies between the average Nusselt number is obtained for 2D cylinder and 3D cylinder configuration which is 28.5% at the highest rotational speed. Even though there are very slight variations between the average Nu values for 3D cylinder and 3D cone case, there are significant variations in the local variation of the average Nusselt number. Higher enhancements in the average Nusselt number are achieved with CNT particles even though the magnetic field reduced the convection and the value is 84.3% at the highest strength of magnetic field. Increasing the permeability resulted in higher local and average heat transfer rates for the 3D porous cavity. In this study, the aspect ratio of the cone was found to be an excellent tool for heat transfer enhancement while 95% enhancements in the average Nusselt number were obtained. The horizontal location of the cone was found to have slight effects on the Nusselt number variations.


Processes ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1444
Author(s):  
Abdulkareem Saleh Hamarsheh ◽  
Firas A. Alwawi ◽  
Hamzeh T. Alkasasbeh ◽  
Ahmed M. Rashad ◽  
Ruwaidiah Idris

This numerical investigation intends to present the impact of nanoparticles volume fraction, Casson, and magnetic force on natural convection in the boundary layer region of a horizontal cylinder in a Casson nanofluid under constant heat flux boundary conditions. Methanol is considered as a host Casson fluid. Graphite oxide (GO), single and multiple walls carbon nanotubes (SWCNTs and MWCNTs) nanoparticles have been incorporated to support the heat transfer performances of the host fluid. The Keller box technique is employed to solve the transformed governing equations. Our numerical findings were in an excellent agreement with the preceding literature. Graphical results of the effect of the relevant parameters on some physical quantities related to examine the behavior of Casson nanofluid flow were obtained, and they confirmed that an augmentation in Casson parameter results in a decline in local skin friction, velocity, or temperature, as well as leading to an increment in local Nusselt number. Furthermore, MWCNTs are the most efficient in improving the rate of heat transfer and velocity, and they possess the lowest temperature.


Author(s):  
Guolong Li ◽  
Jin Wang ◽  
Hongxing Zheng ◽  
Gongnan Xie ◽  
Bengt Sundén

AbstractIn this paper, convective heat transfer of Fe3O4–carbon nanotubes (CNTs) hybrid nanofluid was studied in a horizontal small circular tube under influence of annular magnets. The pipe has an inner diameter of 3 mm and a length of 1.2 m. Heat transfer characteristics of the Fe3O4–water nanofluid were examined for many parameters, such as nanoparticle volume fraction in the range of 0.4–1.2% and Reynolds number in the range of 476–996. In order to increase the thermal conductivity of the Fe3O4–water nanofluid, carbon nanotubes with 0.12–0.48% volume fraction were added into the nanofluid. It was observed that for the Fe3O4–CNTs–water nanofluid with 1.44% volume fraction and under a magnetic field, the maximal local Nusselt number at the Reynolds number 996 increased by 61.54% compared with without a magnetic field. Results also show that compared with the deionized water, the maximal enhancements of the average Nusselt number are 67.9 and 20.89% for the Fe3O4–CNTs–water nanofluid with and without magnetic field, respectively.


2021 ◽  
Vol 2 (2) ◽  
pp. 37-51
Author(s):  
W.N.N. Noranuar ◽  
A.Q. Mohamad ◽  
S. Shafie ◽  
I. Khan ◽  
L.Y. Jiann

The heat and mass transfer of a radiative Casson nanofluid with single-wall and multi-wall carbon nanotubes in a non-coaxial rotating frame is analyzed in this article. The effects of thermal radiation, magnetic field and porosity are considered. Casson human blood is used to suspend both types of carbon nanotubes. The governed dimensional momentum, energy and concentration equations associated with initial and moving boundary conditions are converted into dimensionless expression by applying appropriate dimensionless variables. The exact solutions are determined by solving the dimensionless governing partial differential equations using the Laplace transform method. The obtained solutions are verified by comparing the present results with the published results. The validity of the solutions is assured since a precise agreement between the results is accomplished. The variation of the skin friction, Nusselt number, and Sherwood number for various values of the embedded parameters are presented in tables. The impacts of embedded parameters on the velocity, temperature and concentration profiles are illustrated in graphs. The distribution of the velocity and temperature is enhanced by the nanoparticles volume fraction but a reverse effect is observed for concentration profile. The radiation parameter has amplified the velocity and temperature of the Casson nanofluid. The emergence of porosity effect has aided to the smoothness of fluid flow but the presence of magnetic field reports the opposite effect on the velocity.


Symmetry ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 522 ◽  
Author(s):  
Nur Syazana Anuar ◽  
Norfifah Bachok ◽  
Norihan Md Arifin ◽  
Haliza Rosali

This study focuses on the flow of stagnation region and heat transfer of carbon nanotubes (CNTs) over an exponentially stretching/shrinked sheet in the presence of homogeneous–heterogeneous reactions. Kerosene and water are considered base fluids in both single-wall and multi-wall carbon nanotubes. After employing the appropriate similarity variables, the system of partial differential equations is transformed to a system of nonlinear ordinary differential equations. Solution of the problems is obtained numerically using the bvp4c solver in MATLAB software. The impact of physical parameters, such as solid volume fraction, stretching/shrinking parameter, homogeneous and heterogeneous reaction rate, Schmidt number on the velocity, temperature and concentration profiles, skin friction, and heat transfer rate are discussed graphically and interpreted physically. The results indicate that for an exponentially shrinking sheet, dual solutions exist for a certain range. It is clear from figures that the concentration profile increases for increasing values of heterogeneous parameter and decreasing values of homogeneous parameter. Heat transfer and skin friction were observed to have a greater impact for single-wall carbon nanotubes (SWCNTs) compared to multi-wall carbon nanotubes (MWCNTs). A stability analysis has been performed to show which solutions are linearly stable.


2020 ◽  
Vol 24 (2 Part A) ◽  
pp. 951-963 ◽  
Author(s):  
Abdullah Alzahrani ◽  
Malik Ullah ◽  
Taza Gul ◽  
Dumitru Baleanu

The enhancement of heat transfer through carbon material is the objective of this study. The renowned class of carbon identified as single walled carbon nanotubes and multi walled carbon nanotubes, nanofluid-flow over a non-linear and unstable surface has been explored. The thermophysical properties of the two sorts of carbon nanotube have been implemented from the experimental outputs in the existent literature using engine oil as a base fluid. The viscous dissipation term has also been included in the energy equation improve the heat transfer rate. The thickness of the nanofluid thin layer is kept variable under the influence of the unstable and non-linear stretching of the disk. The elementary governing equations have been transformed into coupled non-linear differential equations. The problem solution is achieved through BVP 2.0 package of the optimal homotopy analysis method. The square residual error for the momentum and thermal boundary-layers up to the 20th order approximations have been obtained. The numerical ND-solve method has been used to validate the he optimal homotopy analysis method results. The impact of the model parameters vs. velocity field and temperature distribution have been shown through graphs and tables. The impact of the physical parameters on the temperature profile and velocity, pitch for both multi wall carbon nanotubes and single walled carbon nanotubes is gained in the range of 0 ? ? ? 4%. From the obtained results it is observed that the single walled carbon nanotubes nanofluids are more efficient to improve the heat transfer phenomena as compared to the multi wall carbon nanotubes.


Author(s):  
C. Sridevi ◽  
A. Sailakumari

Background: In this paper, transient two-dimensional laminar boundary layer viscous incompressible free convective flow of water based nanofluid with carbon nanotubes (CNTs) past a moving vertical cylinder with variable surface temperature is studied numerically in the presence of thermal radiation and heat generation. Methods: The prevailing partial differential equations which model the flow with initial and boundary conditions are solved by implicit finite difference method of Crank Nicolson type which is unconditionally stable and convergent. Results: Influence of Grashof number (Gr), nanoparticle volume fraction ( ), heat generation parameter (Q), temperature exponent (m), radiation parameter (N) and time (t) on velocity and temperature profiles are sketched graphically and elaborated comprehensively. Conclusion: Analysis of Nusselt number and Skin friction coefficient are also discussed numerically for both single wall carbon nanotubes (SWCNTs) and multi wall carbon nanotubes (MWCNTs).


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Muhammad Ramzan ◽  
Jae Dong Chung ◽  
Seifedine Kadry ◽  
Yu-Ming Chu ◽  
Muhammad Akhtar

Abstract A mathematical model is envisioned to discourse the impact of Thompson and Troian slip boundary in the carbon nanotubes suspended nanofluid flow near a stagnation point along an expanding/contracting surface. The water is considered as a base fluid and both types of carbon nanotubes i.e., single-wall (SWCNTs) and multi-wall (MWCNTs) are considered. The flow is taken in a Dacry-Forchheimer porous media amalgamated with quartic autocatalysis chemical reaction. Additional impacts added to the novelty of the mathematical model are the heat generation/absorption and buoyancy effect. The dimensionless variables led the envisaged mathematical model to a physical problem. The numerical solution is then found by engaging MATLAB built-in bvp4c function for non-dimensional velocity, temperature, and homogeneous-heterogeneous reactions. The validation of the proposed mathematical model is ascertained by comparing it with a published article in limiting case. An excellent consensus is accomplished in this regard. The behavior of numerous dimensionless flow variables including solid volume fraction, inertia coefficient, velocity ratio parameter, porosity parameter, slip velocity parameter, magnetic parameter, Schmidt number, and strength of homogeneous/heterogeneous reaction parameters are portrayed via graphical illustrations. Computational iterations for surface drag force are tabulated to analyze the impacts at the stretched surface. It is witnessed that the slip velocity parameter enhances the fluid stream velocity and diminishes the surface drag force. Furthermore, the concentration of the nanofluid flow is augmented for higher estimates of quartic autocatalysis chemical.


2021 ◽  
Vol 13 (9) ◽  
pp. 5086
Author(s):  
Fatih Selimefendigil ◽  
Hakan F. Oztop ◽  
Ali J. Chamkha

Single and double impinging jets heat transfer of non-Newtonian power law nanofluid on a partly curved surface under the inclined magnetic field effects is analyzed with finite element method. The numerical work is performed for various values of Reynolds number (Re, between 100 and 300), Hartmann number (Ha, between 0 and 10), magnetic field inclination (γ, between 0 and 90), curved wall aspect ratio (AR, between 01. and 1.2), power law index (n, between 0.8 and 1.2), nanoparticle volume fraction (ϕ, between 0 and 0.04) and particle size in nm (dp, between 20 and 80). The amount of rise in average Nusselt (Nu) number with Re number depends upon the power law index while the discrepancy between the Newtonian fluid case becomes higher with higher values of power law indices. As compared to case with n = 1, discrepancy in the average Nu number are obtained as −38% and 71.5% for cases with n = 0.8 and n = 1.2. The magnetic field strength and inclination can be used to control the size and number or vortices. As magnetic field is imposed at the higher strength, the average Nu reduces by about 26.6% and 7.5% for single and double jets with n greater than 1 while it increases by about 4.78% and 12.58% with n less than 1. The inclination of magnetic field also plays an important role on the amount of enhancement in the average Nu number for different n values. The aspect ratio of the curved wall affects the flow field slightly while the average Nu variation becomes 5%. Average Nu number increases with higher solid particle volume fraction and with smaller particle size. At the highest particle size, it is increased by about 14%. There is 7% variation in the average Nu number when cases with lowest and highest particle size are compared. Finally, convective heat transfer performance modeling with four inputs and one output is successfully obtained by using Adaptive Neuro-Fuzzy Interface System (ANFIS) which provides fast and accurate prediction results.


Fluids ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 138
Author(s):  
Ali Rehman ◽  
Zabidin Salleh

This paper analyses the two-dimensional unsteady and incompressible flow of a non-Newtonian hybrid nanofluid over a stretching surface. The nanofluid formulated in the present study is TiO2 + Ag + blood, and TiO2 + blood, where in this combination TiO2 + blood is the base fluid and TiO2 + Ag + blood represents the hybrid nanofluid. The aim of the present research work is to improve the heat transfer ratio because the heat transfer ratio of the hybrid nanofluid is higher than that of the base fluid. The novelty of the recent work is the approximate analytical analysis of the magnetohydrodynamics mixed non-Newtonian hybrid nanofluid over a stretching surface. This type of combination, where TiO2+blood is the base fluid and TiO2 + Ag + blood is the hybrid nanofluid, is studied for the first time in the literature. The fundamental partial differential equations are transformed to a set of nonlinear ordinary differential equations with the guide of some appropriate similarity transformations. The analytical approximate method, namely the optimal homotopy analysis method (OHAM), is used for the approximate analytical solution. The convergence of the OHAM for particular problems is also discussed. The impact of the magnetic parameter, dynamic viscosity parameter, stretching surface parameter and Prandtl number is interpreted through graphs. The skin friction coefficient and Nusselt number are explained in table form. The present work is found to be in very good agreement with those published earlier.


Sign in / Sign up

Export Citation Format

Share Document