scholarly journals Sensitivity Analysis of Mathematical Model to Study the Effect of T Cells Infusion in Treatment of CLL

Mathematics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 564 ◽  
Author(s):  
Asad Ur Rehman Anjum ◽  
Qasim Ali Chaudhry ◽  
A. Othman Almatroud

In this paper, we considered a mathematical model concerned with the treatment of Chronic Lymphocytic Leukemia (CLL) taking into account the effect of superficially infused T cells in this particular type of tumor. The model is described thoroughly by the system of non-linear differential equations explaining the interaction of naïve, infected, cancer and immune cell population. The detailed sensitivity analysis with the application is the major part of this paper. The basic objective is to provide insight to how parameters’ behavior varies model results by elaborating the results obtained from the application of sensitivity analysis. The sensitivity of the model was evaluated not only theoretically, but also with the help of a numerical approach, producing graphs providing better imminent of results. We argue that the application of the sensitivity analysis method endows an insight into how and which parameters are of primary significance in controlling the spread of leukemia.

2021 ◽  
Vol 1 ◽  
Author(s):  
HoChan Cheon ◽  
Andrey Kan ◽  
Giulio Prevedello ◽  
Simone C. Oostindie ◽  
Simon J. Dovedi ◽  
...  

Lymphocytes are the central actors in adaptive immune responses. When challenged with antigen, a small number of B and T cells have a cognate receptor capable of recognising and responding to the insult. These cells proliferate, building an exponentially growing, differentiating clone army to fight off the threat, before ceasing to divide and dying over a period of weeks, leaving in their wake memory cells that are primed to rapidly respond to any repeated infection. Due to the non-linearity of lymphocyte population dynamics, mathematical models are needed to interrogate data from experimental studies. Due to lack of evidence to the contrary and appealing to arguments based on Occam’s Razor, in these models newly born progeny are typically assumed to behave independently of their predecessors. Recent experimental studies, however, challenge that assumption, making clear that there is substantial inheritance of timed fate changes from each cell by its offspring, calling for a revision to the existing mathematical modelling paradigms used for information extraction. By assessing long-term live-cell imaging of stimulated murine B and T cells in vitro, we distilled the key phenomena of these within-family inheritances and used them to develop a new mathematical model, Cyton2, that encapsulates them. We establish the model’s consistency with these newly observed fine-grained features. Two natural concerns for any model that includes familial correlations would be that it is overparameterised or computationally inefficient in data fitting, but neither is the case for Cyton2. We demonstrate Cyton2’s utility by challenging it with high-throughput flow cytometry data, which confirms the robustness of its parameter estimation as well as its ability to extract biological meaning from complex mixed stimulation experiments. Cyton2, therefore, offers an alternate mathematical model, one that is, more aligned to experimental observation, for drawing inferences on lymphocyte population dynamics.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Hiroshi Katoh ◽  
Masahiko Watanabe

Development of solid cancer depends on escape from host immunosurveillance. Various types of immune cells contribute to tumor-induced immune suppression, including tumor associated macrophages, regulatory T cells, type 2 NKT cells, and myeloid-derived suppressor cells (MDSCs). Growing body of evidences shows that MDSCs play pivotal roles among these immunosuppressive cells in multiple steps of cancer progression. MDSCs are immature myeloid cells that arise from myeloid progenitor cells and comprise a heterogeneous immune cell population. MDSCs are characterized by the ability to suppress both adaptive and innate immunities mainly through direct inhibition of the cytotoxic functions of T cells and NK cells. In clinical settings, the number of circulating MDSCs is associated with clinical stages and response to treatment in several cancers. Moreover, MDSCs are reported to contribute to chemoresistant phenotype. Collectively, targeting MDSCs could potentially provide a rationale for novel treatment strategies in cancer. This review summarizes recent understandings of MDSCs in cancer and discusses promissing clinical approaches in cancer patients.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 894-894
Author(s):  
Veronika Ecker ◽  
Martina Braun ◽  
Tanja Neumayer ◽  
Markus Muschen ◽  
Jürgen Ruland ◽  
...  

Abstract Chronic lymphocytic leukemia (CLL) is one of the most common B cell malignancies in the Western world. Malignant B cells are blocked from differentiating into immunoglobulin producing-plasma cells and clonally accumulate in the spleen, lymph nodes, bone marrow and peripheral blood. CLL is characterized by immunosuppression throughout all disease stages, which is mediated by increased numbers of myeloid-derived suppressor cells (MDSCs), regulatory T cells (Jitschin and Braun et al., Blood 2014) and direct inhibitory effects of the malignant CLL cells on T cells (Christopoulos etal., Blood 2011). Over the past decade, significant improvement in understanding the pathogenesis of CLL has highlighted the importance of active B cell receptor (BCR) signaling. This has revealed promising targeted treatment options, including the small molecule inhibitors targeting the phosphatidylinositol-3-kinase (PI3K) signaling pathway. Idelalisib and Duvelisib are under clinical investigation for CLL treatment, however, treatment-related toxicities are limiting their application and none of these approaches are curative, highlighting the importance of functional anti-tumor immune responses in CLL for prolonged treatment efficacy. Here, we are testing a novel approach that aims to selectively target CLL B cells and simultaneously restore an appropriate immune cell function. The phosphatase SH2-domain-containing inositol 5ʹ-phosphatase 1 (SHIP1) serves as negative feedback molecule and downregulates PI3K signaling in B cells by dephosphorylating the 5`phosphate of Phosphatidylinositol (3,4,5)-trisphosphate. We hypothesize that CLL cells rely on such negative regulators for optimal survival and can only tolerate a maximum signaling level. We are therefore testing whether SHIP1 inhibition induces hypersignaling and thereby CLL cell death. Furthermore, we are investigating whether SHIP1 inhibition simultanously stimulates immune responses, as it has been shown to induce expansion of murine hematopoietic and mesenchymal stem cell compartments (Brooks et al., Stem cells 2014). 3α-Aminocholestane (3AC) is a small molecule inhibitor of SHIP1 and can be used for pharmacological inhibition. First, we investigated the expression and phosphorylation levels of SHIP1 in CLL. We found SHIP1 to be expressed at various levels in CLL peripheral blood and strongly phosphorylated compared to age-matched healthy donors. Besides, SHIP1 transcription is upregulated in lymph nodes as compared to peripheral blood, which is in line with the assumption of increased BCR signaling in secondary lymphoid organs. We then set out to investigate the consequences of SHIP1 phosphatase inhibition. Similarly, to recent findings in acute lymphoblastic leukemia (Chen et al., Nature 2015), pharmacological inhibition of SHIP1 lead to rapid cell death of CLL cells. We further investigated the mode of cell death and observed specific features of apoptosis, namely caspase 3/7 activation and phosphatidylserine exposure on the outer cell membrane. This has been tested on primary CLL patient samples and T cell leukemia/lymphoma 1 (TCL1)-driven murine CLL cells and was not observed or significantly less pronounced in other lymphoma cell lines or healthy primary B cells. To confirm the specificity of the observed effects, we genetically activated AKT with a GFP reporter in the TCL1-driven mouse model in vivo and in vitro. By tracking GFP-expressing CLL cells, we observed an initial expansion followed by rapid cell death in vitro. When we induced AKT activation in vivo, GFP+ CLL cells were not detectable in the peripheral blood, total CLL count declined upon induction and we found decreased tumor burden in the secondary lymphoid organs, particularly in the lymph nodes. In addition to the direct effects on CLL cells, we sought to investigate the impact of SHIP1 inhibition on other immune cell functions. We observed that SHIP1 inhibition lowers the activity threshold of T cells: When we stimulated a reporter cell line with suboptimal doses of anti-CD3, 3AC treatment significantly enhanced the response rate. Therefore, we propose SHIP1 as a novel interesting target in CLL. In contrast to kinase inhibition and downregulation of the BCR signaling strength, phosphatase inhibition and BCR signaling overaction provides an attractive new treatment strategy for elimination of malignant CLL cells and stimulation of immune responses. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 3 (Supplement_3) ◽  
pp. iii11-iii12
Author(s):  
Hinda Najem ◽  
Anantha Marisetty ◽  
Craig Horbinski ◽  
Jared Burks ◽  
Amy B Heimberger

Abstract Leptomeningeal disease (LMD) in melanoma patients is associated with significant neurological impairments and has a dismal outcome with a median survival of 1.8 months. Despite the therapeutic benefit of targeted therapies and immunotherapies for most kinds of Stage IV melanoma, patients with LMD do not typically benefit. A deeper understanding of the tumor microenvironment (TME) of LMD may provide more appropriate therapeutic selection. A retrospective analysis of subjects who underwent surgical resection with LMD (n=8) were profiled with seven color multiplex to evaluate the expression of the global immune suppressive hub - the signal transducer and activator of transcription 3 (STAT3) and for the presence of CD3 T cells, CD68+ monocytes, CD163 immune suppressive macrophages, CD11c+ antigen presenting cells (APCs) in association with the melanoma tumor marker S100B and DAPI for cellular nuclear identification. High-resolution cellular imaging and quantification was conducted using the Akoya Vectra Polaris. CD163+ macrophage is the most frequent immune cell population in the LMD TME. Occasional CD3+ T cells and CD11c+ APC are also identified, although the latter has concurrent expression of CD163. STAT3 nuclear localization is heterogeneously expressed in the various immune cell populations. Occasional immune cluster interactions can be seen in the tumor stroma and the tumor edge. In conclusion, the TME of LMD is largely devoid of CD3+ T cells, but is enriched for immune suppression and innate immunity.


2020 ◽  
Author(s):  
Xuan Liu ◽  
Sara J.C. Gosline ◽  
Lance T. Pflieger ◽  
Pierre Wallet ◽  
Archana Iyer ◽  
...  

AbstractSingle-cell RNA sequencing is an emerging strategy for characterizing the immune cell population in diverse environments including blood, tumor or healthy tissues. While this has traditionally been done with flow or mass cytometry targeting protein expression, scRNA-Seq has several established and potential advantages in that it can profile immune cells and non-immune cells (e.g. cancer cells) in the same sample, identify cell types that lack precise markers for flow cytometry, or identify a potentially larger number of immune cell types and activation states than is achievable in a single flow assay. However, scRNA-Seq is currently limited due to the need to identify the types of each immune cell from its transcriptional profile, which is not only time-consuming but also requires a significant knowledge of immunology. While recently developed algorithms accurately annotate coarse cell types (e.g. T cells vs macrophages), making fine distinctions has turned out to be a difficult challenge. To address this, we developed a machine learning classifier called ImmClassifier that leverages a hierarchical ontology of cell type. We demonstrate that ImmClassifier outperforms other tools (+20% recall, +14% precision) in distinguishing fine-grained cell types (e.g. CD8+ effector memory T cells) with comparable performance on coarse ones. Thus, ImmClassifier can be used to explore more deeply the heterogeneity of the immune system in scRNA-Seq experiments.


2018 ◽  
Vol 7 (4.36) ◽  
pp. 953
Author(s):  
Khanh Toan Tran ◽  
. .

In the mathematical model with multiple input variables, the sensitivity analysis of the input variables is an important step to ensure the reliability of the mathematical model. In order to optimize the ship manoeuvring simulation, in particular the optimization of the trajectory ship, the sensitivity analysis should be performed in the mathematical model to select the group of the most sensitive hydrodynamic coefficients. In this paper, the author applied the sensitivity analysis method in mathematics model of ship manoeuvring programming in order to optimize the ship trajectory of Esso Bernicia 193000DWT tanker model.  


2010 ◽  
Vol 78 (11) ◽  
pp. 4570-4578 ◽  
Author(s):  
Jacques van der Merwe ◽  
Tracy Prysliak ◽  
Jose Perez-Casal

ABSTRACT Mycoplasma bovis is a small, cell wall-less bacterium that contributes to a number of chronic inflammatory diseases in both dairy and feedlot cattle, including mastitis and bronchopneumonia. Numerous reports have implicated M. bovis in the activation of the immune system, while at the same time inhibiting immune cell proliferation. However, it is unknown whether the specific immune-cell population M. bovis is capable of attaching to and potentially invading. Here, we demonstrate that incubation of M. bovis Mb1 with bovine peripheral blood mononuclear cells (PBMC) resulted in a significant reduction in their proliferative responses while still remaining viable and capable of gamma interferon secretion. Furthermore, we show that M. bovis Mb1 can be found intracellularly (suggesting a role for either phagocytosis or attachment/invasion) in a number of select bovine PBMC populations (T cells, B cells, monocytes, γδ T cells, dendritic cells, NK cells, cytotoxic T cells, and T-helper cells), as well as red blood cells, albeit it at a significantly lower proportion. M. bovis Mb1 appeared to display three main patterns of intracellular staining: diffuse staining, an association with the intracellular side of the cell membrane, and punctate/vacuole-like staining. The invasion of circulating immune cells and erythrocytes could play an important role in disease pathogenesis by aiding the transport of M. bovis from the lungs to other sites.


2020 ◽  
Author(s):  
Tao Lin ◽  
Tingting Geng ◽  
Andrew Harrison ◽  
Duomeng Yang ◽  
Anthony T. Vella ◽  
...  

AbstractArthritogenic alphaviruses such as Chikungunya virus and O’nyong nyong virus cause acute and chronic crippling arthralgia associated with inflammatory immune responses. However, the physiological functions of individual immune signaling pathways in the pathogenesis of alphaviral arthritis remain poorly understood. Here we report that a deficiency in the stimulator-of-interferon-genes (STING) led to enhanced viral loads, exacerbated inflammation and selectively elevated expression of CXCL10, a chemoattractant for monocytes/macrophages/T cells, in mouse feet. Cxcl10-/- mice had the same viremia as wild-type animals, but fewer immune infiltrates and lower viral loads in footpads at the peak of arthritic disease (6-8 days post infection). Macrophages constituted the largest immune cell population in footpads following infection, which were significantly reduced in Cxcl10-/- mice. The viral RNA loads in neutrophils and macrophages were reduced in Cxcl10-/- compared to wild-type mice. In summary, our results demonstrate that STING signaling represses, while CXCL10 signaling promotes, pathogenesis of alphaviral disease.


Stroke ◽  
2021 ◽  
Vol 52 (12) ◽  
Author(s):  
Yueman Zhang ◽  
Arthur Liesz ◽  
Peiying Li

Immune cell infiltration to the injured brain is a key component of the neuroinflammatory response after ischemic stroke. In contrast to the large amount of proinflammatory immune cells, regulatory T cells, are an important subgroup of T cells that are involved in maintaining immune homeostasis and suppress an overshooting immune reaction after stroke. Numerous previous reports have consistently demonstrated the beneficial role of this immunosuppressive immune cell population during the acute phase after experimental stroke by limiting inflammatory lesion progression. Two recent studies expanded now this concept and demonstrate that regulatory T cells-mediated effects also promote chronic recovery after stroke by promoting a proregenerative tissue environment. These recent findings suggest that boosting regulatory T cells could be beneficial beyond modulating the immediate neuroinflammatory response and improve chronic functional recovery.


Viruses ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1252
Author(s):  
Tao Lin ◽  
Tingting Geng ◽  
Andrew G. Harrison ◽  
Duomeng Yang ◽  
Anthony T. Vella ◽  
...  

Emerging and re-emerging arthritogenic alphaviruses, such as Chikungunya virus (CHIKV) and O’nyong nyong virus, cause acute and chronic crippling arthralgia associated with inflammatory immune responses. Approximately 50% of CHIKV-infected patients suffer from rheumatic manifestations that last 6 months to years. However, the physiological functions of individual immune signaling pathways in the pathogenesis of alphaviral arthritis remain poorly understood. Here, we report that a deficiency in CXCL10, which is a chemoattractant for monocytes/macrophages/T cells, led to the same viremia as wild-type animals, but fewer immune infiltrates and lower viral loads in footpads at the peak of arthritic disease (6–8 days post infection). Macrophages constituted the largest immune cell population in footpads following infection, and were significantly reduced in Cxcl10−/− mice. The viral RNA loads in neutrophils and macrophages were reduced in Cxcl10−/− compared to wild-type mice. In summary, our results demonstrate that CXCL10 signaling promotes the pathogenesis of alphaviral disease and suggest that CXCL10 may be a therapeutic target for mitigating alphaviral arthritis.


Sign in / Sign up

Export Citation Format

Share Document