scholarly journals YOLOMask, an Instance Segmentation Algorithm Based on Complementary Fusion Network

Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1766
Author(s):  
Jiang Hua ◽  
Tonglin Hao ◽  
Liangcai Zeng ◽  
Gui Yu

Object detection and segmentation can improve the accuracy of image recognition, but traditional methods can only extract the shallow information of the target, so the performance of algorithms is subject to many limitations. With the development of neural network technology, semantic segmentation algorithms based on deep learning can obtain the category information of each pixel. However, the algorithm cannot effectively distinguish each object of the same category, so YOLOMask, an instance segmentation algorithm based on complementary fusion network, is proposed in this paper. Experimental results on public data sets COCO2017 show that the proposed fusion network can accurately obtain the category and location information of each instance and has good real-time performance.

2021 ◽  
Author(s):  
Donglin Zhu ◽  
Lei Li ◽  
Rui Guo ◽  
Shifan Zhan

Abstract Fault detection is an important, but time-consuming task in seismic data interpretation. Traditionally, seismic attributes, such as coherency (Marfurt et al., 1998) and curvature (Al-Dossary et al., 2006) are used to detect faults. Recently, machine learning methods, such as convolution neural networks (CNNs) are used to detect faults, by applying various semantic segmentation algorithms to the seismic data (Wu et al., 2019). The most used algorithm is U-Net (Ronneberger et al., 2015), which can accurately and efficiently provide probability maps of faults. However, probabilities of faults generated by semantic segmentation algorithms are not sufficient for direct recognition of fault types and reconstruction of fault surfaces. To address this problem, we propose, for the first time, a workflow to use instance segmentation algorithm to detect different fault lines. Specifically, a modified CNN (LaneNet; Neven et al., 2018) is trained using automatically generated synthetic seismic images and corresponding labels. We then test the trained CNN using both synthetic and field collected seismic data. Results indicate that the proposed workflow is accurate and effective at detecting faults.


2018 ◽  
Author(s):  
Yuta Tokuoka ◽  
Takahiro G Yamada ◽  
Noriko F Hiroi ◽  
Tetsuya J Kobayashi ◽  
Kazuo Yamagata ◽  
...  

AbstractIn embryology, image processing methods such as segmentation are applied to acquiring quantitative criteria from time-series three-dimensional microscopic images. When used to segment cells or intracellular organelles, several current deep learning techniques outperform traditional image processing algorithms. However, segmentation algorithms still have unsolved problems, especially in bioimage processing. The most critical issue is that the existing deep learning-based algorithms for bioimages can perform only semantic segmentation, which distinguishes whether a pixel is within an object (for example, nucleus) or not. In this study, we implemented a novel segmentation algorithm, based on deep learning, which segments each nucleus and adds different labels to the detected objects. This segmentation algorithm is called instance segmentation. Our instance segmentation algorithm, implemented as a neural network, which we named QCA Net, substantially outperformed 3D U-Net, which is the best semantic segmentation algorithm that uses deep learning. Using QCA Net, we quantified the nuclear number, volume, surface area, and center of gravity coordinates during the development of mouse embryos. In particular, QCA Net distinguished nuclei of embryonic cells from those of polar bodies formed in meiosis. We consider that QCA Net can greatly contribute to bioimage segmentation in embryology by generating quantitative criteria from segmented images.


2021 ◽  
Vol 13 (11) ◽  
pp. 2064
Author(s):  
Junjie Li ◽  
Lingkui Meng ◽  
Beibei Yang ◽  
Chongxin Tao ◽  
Linyi Li ◽  
...  

Deep learning technology has achieved great success in the field of remote sensing processing. However, the lack of tools for making deep learning samples with remote sensing images is a problem, so researchers have to rely on a small amount of existing public data sets that may influence the learning effect. Therefore, we developed an add-in (LabelRS) based on ArcGIS to help researchers make their own deep learning samples in a simple way. In this work, we proposed a feature merging strategy that enables LabelRS to automatically adapt to both sparsely distributed and densely distributed scenarios. LabelRS solves the problem of size diversity of the targets in remote sensing images through sliding windows. We have designed and built in multiple band stretching, image resampling, and gray level transformation algorithms for LabelRS to deal with the high spectral remote sensing images. In addition, the attached geographic information helps to achieve seamless conversion between natural samples, and geographic samples. To evaluate the reliability of LabelRS, we used its three sub-tools to make semantic segmentation, object detection and image classification samples, respectively. The experimental results show that LabelRS can produce deep learning samples with remote sensing images automatically and efficiently.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zheshu Jia ◽  
Deyun Chen

Image semantic data have multilevel feature information. In the actual segmentation, the existing segmentation algorithms have some limitations, resulting in the fact that the final segmentation accuracy is too small. To solve this problem, a segmentation algorithm of image semantic sequence data based on graph convolution network is constructed. The graph convolution network is used to construct the image search process. The semantic sequence data are extracted. After the qualified data points are accumulated, the gradient amplitude forms complete rotation field and no scatter field in the diffusion process, which enhances the application scope of the algorithm, controls the accuracy of the segmentation algorithm, and completes the construction of the data segmentation algorithm. After the experimental dataset is prepared and the semantic segmentation direction is defined, we compare our method with four methods. The results show that the segmentation algorithm designed in this paper has the highest accuracy.


2021 ◽  
Vol 3 (5) ◽  
Author(s):  
João Gaspar Ramôa ◽  
Vasco Lopes ◽  
Luís A. Alexandre ◽  
S. Mogo

AbstractIn this paper, we propose three methods for door state classification with the goal to improve robot navigation in indoor spaces. These methods were also developed to be used in other areas and applications since they are not limited to door detection as other related works are. Our methods work offline, in low-powered computers as the Jetson Nano, in real-time with the ability to differentiate between open, closed and semi-open doors. We use the 3D object classification, PointNet, real-time semantic segmentation algorithms such as, FastFCN, FC-HarDNet, SegNet and BiSeNet, the object detection algorithm, DetectNet and 2D object classification networks, AlexNet and GoogleNet. We built a 3D and RGB door dataset with images from several indoor environments using a 3D Realsense camera D435. This dataset is freely available online. All methods are analysed taking into account their accuracy and the speed of the algorithm in a low powered computer. We conclude that it is possible to have a door classification algorithm running in real-time on a low-power device.


2021 ◽  
Vol 16 (1) ◽  
pp. 1-24
Author(s):  
Yaojin Lin ◽  
Qinghua Hu ◽  
Jinghua Liu ◽  
Xingquan Zhu ◽  
Xindong Wu

In multi-label learning, label correlations commonly exist in the data. Such correlation not only provides useful information, but also imposes significant challenges for multi-label learning. Recently, label-specific feature embedding has been proposed to explore label-specific features from the training data, and uses feature highly customized to the multi-label set for learning. While such feature embedding methods have demonstrated good performance, the creation of the feature embedding space is only based on a single label, without considering label correlations in the data. In this article, we propose to combine multiple label-specific feature spaces, using label correlation, for multi-label learning. The proposed algorithm, mu lti- l abel-specific f eature space e nsemble (MULFE), takes consideration label-specific features, label correlation, and weighted ensemble principle to form a learning framework. By conducting clustering analysis on each label’s negative and positive instances, MULFE first creates features customized to each label. After that, MULFE utilizes the label correlation to optimize the margin distribution of the base classifiers which are induced by the related label-specific feature spaces. By combining multiple label-specific features, label correlation based weighting, and ensemble learning, MULFE achieves maximum margin multi-label classification goal through the underlying optimization framework. Empirical studies on 10 public data sets manifest the effectiveness of MULFE.


2021 ◽  
pp. 016555152199863
Author(s):  
Ismael Vázquez ◽  
María Novo-Lourés ◽  
Reyes Pavón ◽  
Rosalía Laza ◽  
José Ramón Méndez ◽  
...  

Current research has evolved in such a way scientists must not only adequately describe the algorithms they introduce and the results of their application, but also ensure the possibility of reproducing the results and comparing them with those obtained through other approximations. In this context, public data sets (sometimes shared through repositories) are one of the most important elements for the development of experimental protocols and test benches. This study has analysed a significant number of CS/ML ( Computer Science/ Machine Learning) research data repositories and data sets and detected some limitations that hamper their utility. Particularly, we identify and discuss the following demanding functionalities for repositories: (1) building customised data sets for specific research tasks, (2) facilitating the comparison of different techniques using dissimilar pre-processing methods, (3) ensuring the availability of software applications to reproduce the pre-processing steps without using the repository functionalities and (4) providing protection mechanisms for licencing issues and user rights. To show the introduced functionality, we created STRep (Spam Text Repository) web application which implements our recommendations adapted to the field of spam text repositories. In addition, we launched an instance of STRep in the URL https://rdata.4spam.group to facilitate understanding of this study.


2021 ◽  
Vol 13 (10) ◽  
pp. 1975
Author(s):  
Lin Wang ◽  
Yuzhen Zhou ◽  
Qiao Hu ◽  
Zhenghong Tang ◽  
Yufeng Ge ◽  
...  

Woody plant encroachment into grasslands ecosystems causes significantly ecological destruction and economic losses. Effective and efficient management largely benefits from accurate and timely detection of encroaching species at an early development stage. Recent advances in unmanned aircraft systems (UAS) enabled easier access to ultra-high spatial resolution images at a centimeter level, together with the latest machine learning based image segmentation algorithms, making it possible to detect small-sized individuals of target species at early development stage and identify them when mixed with other species. However, few studies have investigated the optimal practical spatial resolution of early encroaching species detection. Hence, we investigated the performance of four popular semantic segmentation algorithms (decision tree, DT; random forest, RF; AlexNet; and ResNet) on a multi-species forest classification case with UAS-collected RGB images in original and down-sampled coarser spatial resolutions. The objective of this study was to explore the optimal segmentation algorithm and spatial resolution for eastern redcedar (Juniperus virginiana, ERC) early detection and its classification within a multi-species forest context. To be specific, firstly, we implemented and compared the performance of the four semantic segmentation algorithms with images in the original spatial resolution (0.694 cm). The highest overall accuracy was 0.918 achieved by ResNet with a mean interaction over union at 85.0%. Secondly, we evaluated the performance of ResNet algorithm with images in down-sampled spatial resolutions (1 cm to 5 cm with 0.5 cm interval). When applied on the down-sampled images, ERC segmentation performance decreased with decreasing spatial resolution, especially for those images coarser than 3 cm spatial resolution. The UAS together with the state-of-the-art semantic segmentation algorithms provides a promising tool for early-stage detection and localization of ERC and the development of effective management strategies for mixed-species forest management.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Dominik Jens Elias Waibel ◽  
Sayedali Shetab Boushehri ◽  
Carsten Marr

Abstract Background Deep learning contributes to uncovering molecular and cellular processes with highly performant algorithms. Convolutional neural networks have become the state-of-the-art tool to provide accurate and fast image data processing. However, published algorithms mostly solve only one specific problem and they typically require a considerable coding effort and machine learning background for their application. Results We have thus developed InstantDL, a deep learning pipeline for four common image processing tasks: semantic segmentation, instance segmentation, pixel-wise regression and classification. InstantDL enables researchers with a basic computational background to apply debugged and benchmarked state-of-the-art deep learning algorithms to their own data with minimal effort. To make the pipeline robust, we have automated and standardized workflows and extensively tested it in different scenarios. Moreover, it allows assessing the uncertainty of predictions. We have benchmarked InstantDL on seven publicly available datasets achieving competitive performance without any parameter tuning. For customization of the pipeline to specific tasks, all code is easily accessible and well documented. Conclusions With InstantDL, we hope to empower biomedical researchers to conduct reproducible image processing with a convenient and easy-to-use pipeline.


Sign in / Sign up

Export Citation Format

Share Document