scholarly journals Anti-Inflammatory Activity of β-thymosin Peptide Derived from Pacific Oyster (Crassostrea gigas) on NO and PGE2 Production by Down-Regulating NF-κB in LPS-Induced RAW264.7 Macrophage Cells

Marine Drugs ◽  
2019 ◽  
Vol 17 (2) ◽  
pp. 129 ◽  
Author(s):  
Dukhyun Hwang ◽  
Min-jae Kang ◽  
Mi Jo ◽  
Yong Seo ◽  
Nam Park ◽  
...  

β-thymosin is known for having 43 amino acids, being water-soluble, having a light molecular weight and ubiquitous polypeptide. The biological activities of β-thymosin are diverse and include the promotion of wound healing, reduction of inflammation, differentiation of T cells and inhibition of apoptosis. Our previous studies showed that oyster β-thymosin originated from the mantle of the Pacific oyster, Crassostrea gigas and had antimicrobial activity. In this study, we investigated the anti-inflammatory effects of oyster β-thymosin in lipopolysaccharide (LPS)-induced RAW264.7 macrophage cells using human β-thymosin as a control. Oyster β-thymosin inhibited the nitric oxide (NO) production as much as human β-thymosin in LPS-induced RAW264.7 cells. It also showed that oyster β-thymosin suppressed the expression of prostaglandin E2 (PGE2), inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Moreover, oyster β-thymosin reduced inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6). Oyster β-thymosin also suppressed the nuclear translocation of phosphorylated nuclear factor-κB (NF-κB) and degradation of inhibitory κB (IκB) in LPS-induced RAW264.7 cells. These results suggest that oyster β-thymosin, which is derived from the mantle of the Pacific oyster, has as much anti-inflammatory effects as human β-thymosin. Additionally, oyster β-thymosin suppressed NO production, PGE2 production and inflammatory cytokines expression via NF-κB in LPS-induced RAW264.7 cells.

2018 ◽  
Vol 46 (06) ◽  
pp. 1281-1296 ◽  
Author(s):  
Sang Yun Han ◽  
Young-Su Yi ◽  
Seong-Gu Jeong ◽  
Yo Han Hong ◽  
Kang Jun Choi ◽  
...  

Lilium bulbs have long been used as Chinese traditional medicines to alleviate the symptoms of various human inflammatory diseases. However, mechanisms of Lilium bulb-mediated anti-inflammatory activity and the bioactive components in Lilium bulbs remain unknown. In the present study, the anti-inflammatory activity of Lilium bulbs and the underlying mechanism of action were investigated in macrophages using Lilium bulb ethanol extracts (Lb-EE). In a dose-dependent manner, Lb-EE inhibited nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW264.7 cells and bone marrow-derived macrophages (BMDMs) without causing significant cytotoxicity. Lb-EE also down-regulated mRNA expression of inflammatory genes in LPS-stimulated RAW264.7 cells, which included inducuble nitric oxide synthase (iNOS), cyclooxygenase-2 (COX2), and tumor necrosis factor-[Formula: see text] (TNF-[Formula: see text]). Furthermore, Lb-EE markedly restored LPS-induced morphological changes in RAW264.7 cells to a normal morphology. HPLC analysis identified quercetin, luteolin, and kaempferol as bioactive components contained in Lb-EE. Mechanistic studies in LPS-stimulated RAW264.7 cells revealed that Lb-EE suppressed MyD88- and TRIF-induced NF-[Formula: see text]B transcriptional activation and the nuclear translocation of NF-[Formula: see text]B transcription factors. Moreover, Lb-EE inhibited IKK[Formula: see text]/[Formula: see text]-induced activation of the NF-[Formula: see text]B signaling pathway and IKK inhibition significantly reduced NO production in LPS-stimulated RAW264.7 cells. Taken together, these results suggest that Lb-EE plays an anti-inflammatory role by targeting IKK[Formula: see text]/[Formula: see text]-mediated activation of the NF-[Formula: see text]B signaling pathway during macrophage-mediated inflammatory responses.


2018 ◽  
Vol 11 (4) ◽  
pp. 1755-1761
Author(s):  
Eun-Jin Yang ◽  
Sungchan Jang ◽  
Kwang Hee Hyun ◽  
Eun-Young Jung ◽  
Seung-Young Kim ◽  
...  

The anti-inflammatory activity and non-toxicity of Sonchus oleraceus extract (J6) were tested by measuring its effect on the levels of nitric oxide (NO), prostaglandin E2 (PGE2), and the pro-inflammatory cytokines, interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. We treated the RAW264.7 cells with various concentrations (50, 100, or 200 μg/mL) of J6. Our results showed that J6 inhibited the production of NO, PGE2, and pro-inflammatory cytokines in a concentration-dependent manner, without compromising cell viability. In addition, we provided supporting evidence that the inhibitory activity of J6 on the production of NO and PGE2 occurred via the downregulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), respectively. Our findings suggest that J6 is a new source for anti-inflammatory drugs and ingredients for healthcare products that include functional cosmetics.


2020 ◽  
Author(s):  
Susanne Vogeler ◽  
Stefano Carboni ◽  
Xiaoxu Li ◽  
Nancy Nevejan ◽  
Sean J Monaghan ◽  
...  

Abstract Background: Nitric oxide (NO) is presumed to be a regulator of metamorphosis in many invertebrate species, and although NO pathways have been comparatively well-investigated in gastropods, annelids and crustaceans, there has been very limited research on the effects of NO on metamorphosis in bivalve shellfish.Results: In this paper, we investigate the effects of NO pathway inhibitors and NO donors on metamorphosis induction in larvae of the Pacific oyster, Crassostrea gigas. The nitric oxides synthase (NOS) inhibitors s-methylisothiourea hemisulfate salt (SMIS), aminoguanidine hemisulfate salt (AGH) and 7-nitroindazole (7-NI) induced metamorphosis ranging from 75%, 76% to 83% respectively, and operating in a concentration-dependent manner. Additional induction of up to 54% resulted from exposures to 1H-[1,2,4]Oxadiazole[4,3-a]quinoxalin-1-one (ODQ), an inhibitor of soluble guanylyl cyclase, with which NO interacts to catalyse the synthesis of cyclic guanosine monophosphate (cGMP). Conversely, high concentrations of the NO donor sodium nitroprusside dihydrate in combination with metamorphosis inducers epinephrine, MK-801 or SMIS, significantly decreased metamorphosis, although a potential harmful effect of excessive NO unrelated to metamorphosis pathway cannot be excluded. Expression of CgNOS also decreased in larvae after metamorphosis regardless of the inducers used, but intensified again post-metamorphosis in spat. Fluorescent detection of NO in competent larvae with DAF-FM diacetate and localisation of the oyster nitric oxide synthase CgNOS expression by in-situ hybridisation showed that NO occurs primarily in two key larval structures, the velum and foot. cGMP was also detected in the foot using immunofluorescent assays, and is potentially involved in the foot’s smooth muscle relaxation.Conclusion: Together, these results suggest that the NO pathway acts as negative regulator of metamorphosis in Pacific oyster larvae, and that NO reduction induces metamorphosis by inhibiting swimming or crawling behaviour, in conjunction with a cascade of additional neuroendocrine downstream responses.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Peng He ◽  
Yiwen Hu ◽  
Changzhao Huang ◽  
Xi Wang ◽  
Heng Zhang ◽  
...  

Gastrodia elata is a traditional herbal medicine that has been used for centuries to treat rheumatism. Previous studies have confirmed that ethanol extracts of Gastrodia elata have anti-inflammatory and antioxidant activities, and the n-butanol fraction exerts a higher inhibitory effect. However, the in vivo anti-inflammatory effects of Gastrodia elata have not been evaluated. Thus, we assessed the therapeutic effect of the n-butanol extract of Gastrodia elata (BGE) on complete Freund’s adjuvant- (CFA-) induced arthritis rats which were separated into six groups (NOR; MODEL; CFA + dexamethasone (DEX); CFA + 25, 50, 100 mg/kg BGE). The paw swelling, joint radiology, and histology were used to analyze the effect of BGE on delaying the progression of rheumatoid arthritis. Furthermore, serum levels of inflammatory cytokines were analyzed via ELISA. In addition, the effect of BGE on nitric oxide (NO) production, expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2(COX-2), and inflammatory cytokines were detected in lipopolysaccharide- (LPS-) stimulated RAW264.7 macrophage cells. Lastly, the impacts of BGE on the activation of the mitogen-activated protein kinases (MAPK) pathway in CFA rats and LPS-stimulated RAW264.7 macrophage were examined by western blot analysis. The results show that BGE can significantly reduce paw swelling without losing the body weight of rats. Imaging assessment confirms that BGE can protect cartilage from destruction, as well as reducing inflammatory cell infiltration and synovial proliferation. Moreover, BGE suppresses the production of inflammatory cytokines in serum and inhibits the activation of the phosphorylation of p38 and ERK in CFA rats. BGE was also demonstrated to decrease the production of NO and inflammatory cytokines in LPS-stimulated RAW264.7 cells. The effect of BGE in LPS-induced expression leads to reduced p38 and ERK phosphorylation and also downregulates the protein expression of iNOS and COX-2. Taken together, BGE exhibits a potential therapeutic effect on CFA rats, and its anti-inflammatory and antioxidant effects were possibly exerted by regulation of ERK/p38MAPK.


2021 ◽  
Vol 43 (1) ◽  
pp. 93-106
Author(s):  
Orapin Insuan ◽  
Phornphimon Janchai ◽  
Benchaluk Thongchuai ◽  
Rujirek Chaiwongsa ◽  
Supaporn Khamchun ◽  
...  

Bromelain is a mixture of proteolytic enzymes derived from pineapple (Ananas comosus) fruit and stem possessing several beneficial properties, particularly anti-inflammatory activity. However, the molecular mechanisms underlying the anti-inflammatory effects of bromelain are unclear. This study investigated the anti-inflammatory effects and inhibitory molecular mechanisms of crude and purified rhizome bromelains on lipopolysaccharide (LPS)-induced inflammation in RAW 264.7 macrophage cells. RAW264.7 cells were pre-treated with various concentrations of crude bromelain (CB) or purified bromelain (PB), and then treated with LPS. The production levels of pro-inflammatory cytokines and mediators, including nitric oxide (NO), interleukin (IL)-6, and tumor necrosis factor (TNF)-α were determined by Griess and ELISA assays. The expressions of inducible nitric oxide synthetase (iNOS), cyclooxygenase (COX)-2, nuclear factor kappa B (NF-κB), and mitogen-activated protein kinases (MAPKs)-signaling pathway-related proteins were examined by western blot analysis. The pre-treatment of bromelain dose-dependently reduced LPS-induced pro-inflammatory cytokines and mediators, which correlated with downregulation of iNOS and COX-2 expressions. The inhibitory potency of PB was stronger than that of CB. PB also suppressed phosphorylated NF-κB (p65), nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha, extracellular signal-regulated kinases, c-Jun amino-terminal kinases, and p38 proteins in LPS-treated cells. PB then exhibited potent anti-inflammatory effects on LPS-induced inflammatory responses in RAW264.7 cells by inhibiting the NF-κB and MAPKs-signaling pathways.


2017 ◽  
Vol 12 (8) ◽  
pp. 1934578X1701200 ◽  
Author(s):  
Tomoe Ohta ◽  
Seikou Nakamura ◽  
Tomoko Matsumoto ◽  
Souichi Nakashima ◽  
Keiko Ogawa ◽  
...  

A new acylated oleanane-type triterpene oligoglycoside, floratheasaponin K (1), was isolated together with 11 known compounds including floratheasaponins D (2)–G (5), and I (6), chakasaponin V (7), and assamsaponin E (8) from the flower buds of Camellia sinensis cultivated in India. The chemical structure of floratheasaponin K (1) was elucidated on the basis of chemical and physicochemical evidence. In addition, chakasaponins V (7) and I (13) significantly inhibited nitric oxide (NO) production in lipopolysaccharide- (LPS) activated RAW264.7 cells without cytotoxicity.


Author(s):  
Emi Norzehan Mohamad Mahbob ◽  
Rohaya Ahmad ◽  
Syahida Ahmad

Hedyotis spesies have been used in Chinese folk medicine as a treatment for colds, stomatitis and various inflammations. In this study, three methanolic extracts of Hedyotis species (Hedyotis corymbosa, Hedyotis havilandii and Hedyotis philippinensis) were screened for their anti-inflammatory activity. The plant extracts along with asperuloside, the marker compound of H. philippinensis were tested for their anti-inflammatory effect against lipopolysaccharide (LPS) and interferon- (IFN-)-induced nitric oxide (NO) production using RAW264.7 macrophage cells. Among the three species, H. philippinensis (leaves and stems) showed good NO radical inhibitory activity (with IC50 values of 139.76±12.50 and 176.21±2.48 g/ml, respectively). Asperuloside, isolated as a major compound from the plant moderately inhibited LPS/IFN--induced NO production by 63% at a concentration of 100 M (45% cell viability) compared to L-NAME (77 %). Its IC50 value was found to be 75.45±2.25 M. Its inhibition was also found to be dose-dependent.


2013 ◽  
Vol 41 (05) ◽  
pp. 1109-1123 ◽  
Author(s):  
Hyo-Jin Lee ◽  
Yun-Jeong Jeong ◽  
Tae-Sung Lee ◽  
Yoon-Yub Park ◽  
Whi-Gun Chae ◽  
...  

In this study, we evaluated the anti-inflammatory effects of moringa (Moringa oleifera Lam.), a natural biologically active substance, by determining its inhibitory effects on pro-inflammatory mediators in lipopolysaccharide (LPS)-stimulated macrophage RAW264.7 cells. Extracts from different parts of moringa (root, leaf, and fruit) reduced LPS-induced nitric oxide (NO) release in a dose-dependent manner. The moringa fruit extract most effectively inhibited LPS-induced NO production and levels of inducible nitric oxide synthase (iNOS). The moringa fruit extract also was shown to suppress the production of inflammatory cytokines including IL-1β, TNF-α, and IL-6. Furthermore, moringa fruit extract inhibited the cytoplasmic degradation of I κ B -α and the nuclear translocation of p65 proteins, resulting in lower levels of NF -κ B transactivation. Collectively, the results of this study demonstrate that moringa fruit extract reduces the levels of pro-inflammatory mediators including NO , IL-1β, TNF-α, and IL-6 via the inhibition of NF -κ B activation in RAW264.7 cells. These findings reveal, in part, the molecular basis underlying the anti-inflammatory properties of moringa fruit extract.


2019 ◽  
Vol 14 (5) ◽  
pp. 1934578X1984979 ◽  
Author(s):  
Kasira Phasanasophon ◽  
Sang Moo Kim

Trifuhalol A, a phlorotannin, was extracted from Agarum cribrosum with ethyl acetate and fractionated using Sephadex LH-20 column chromatography (SF1-SF6). The ethyl acetate fraction (EAF) and SF5-containing trifuhalol A exhibited strong inhibitory activity against hyaluronidase. The anti-inflammatory activity of the phlorotannin, EAF, and SF5 was determined through the inhibition of nitric oxide (NO) production in lipopolysaccharide-stimulated RAW264.7 cells. Furthermore, the inhibition of NO production was validated by confirming the appreciable downregulation of inducible nitric oxide synthase expression. Agarum cribrosum phlorotannin also markedly suppressed the expression of cyclooxygenase-2, interleukin (IL)-1β, IL-6, and tumor necrosis factor-α. In addition, the anti-inflammatory action was verified by examining its effects on proinflammatory signaling pathways. The activation of nuclear factor (NF)-κB and mitogen-activated protein kinases (MAPKs) was attenuated via the inhibition of NF-κB p-65, c-Jun N-terminal kinase, extracellular signal-regulated kinase 1/2, and p38 MAPK phosphorylation. Therefore, trifuhalol A is a potential source for either the prevention or the treatment of inflammation.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Hui Liao ◽  
Yuanping Li ◽  
Xiaoru Zhai ◽  
Bin Zheng ◽  
Linda Banbury ◽  
...  

Objective. Safflower has antioxidant and anti-inflammatory activities. The two forms of preparations for safflower which are widely used in China are injection and decoction. The first step of the process for preparing an injection involves extracting safflower with water, which actually yields a decoction. This study is intended to investigate how the preparation process influences the anti-inflammatory activity of safflower in vitro. Methods. Five samples, including a decoction (sample 1) and an injection (sample 5) of safflower, were prepared according to the national standard WS3-B-3825-98-2012 and were analyzed by the oxygen radical absorbance capacity (ORAC) method and the 1,1-diphenyl-2-trinitrophenylhydrazine (DPPH) method for comparison. Sample 1 and sample 5 were further tested by the Griess assay and ELISA for their effects on nitric oxide (NO) production and interleukin- (IL-) 1β content in lipopolysaccharide- (LPS-) activated RAW264.7 cells. The protein and mRNA levels of inducible nitric oxide synthase (iNOS) and IL-1β were measured by Western blotting and real-time quantitative PCR. Results. Sample 5 showed a significantly higher ORAC value and a lower half inhibitory concentration (IC50) for DPPH scavenging activity as compared to the other four samples (p<0.05). LPS significantly upregulated the mRNA and protein expressions of iNOS and IL-1β as compared to the solvent control (p<0.01). As compared to sample 1, sample 5 significantly decreased NO production, iNOS protein expression, and the contents of IL-1β mRNA and IL-1β protein at both 100 μg/ml and 200 μg/ml (all: p<0.05) and significantly downregulated iNOS mRNA expression at 100 μg/ml (p<0.05). Conclusions. Results of this study demonstrate that the safflower injection prepared according to the national standard has a significant effect of suppressing protein and mRNA expressions of iNOS and IL-1β as compared to its traditional decoction.


Sign in / Sign up

Export Citation Format

Share Document