scholarly journals A Synthetic Derivative of Antimicrobial Peptide Holothuroidin 2 from Mediterranean Sea Cucumber (Holothuria tubulosa) in the Control of Listeria monocytogenes

Marine Drugs ◽  
2019 ◽  
Vol 17 (3) ◽  
pp. 159 ◽  
Author(s):  
Maria Cusimano ◽  
Angelo Spinello ◽  
Giampaolo Barone ◽  
Domenico Schillaci ◽  
Stella Cascioferro ◽  
...  

Due to the limited number of available antibiotics, antimicrobial peptides (AMPs) are considered antimicrobial candidates to fight difficult-to-treat infections such as those associated with biofilms. Marine environments are precious sources of AMPs, as shown by the recent discovery of antibiofilm properties of Holothuroidin 2 (H2), an AMP produced by the Mediterranean sea cucumber Holothuria tubulosa. In this study, we considered the properties of a new H2 derivative, named H2d, and we tested it against seven strains of the dangerous foodborne pathogen Listeria monocytogenes. This peptide was more active than H2 in inhibiting the growth of planktonic L. monocytogenes and was able to interfere with biofilm formation at sub-minimum inhibitory concentrations (MICs). Atomic-level molecular dynamics (MD) simulations revealed insights related to the enhanced inhibitory activity of H2d, showing that the peptide is characterized by a more defined tertiary structure with respect to its ancestor. This allows the peptide to better exhibit an amphipathic character, which is an essential requirement for the interaction with cell membranes, similarly to other AMPs. Altogether, these results support the potential use of our synthetic peptide, H2d, as a template for the development of novel AMP-based drugs able to fight foodborne that are resistant to conventional antibiotics.

2006 ◽  
Vol 23 (2) ◽  
pp. 184-194 ◽  
Author(s):  
S.K. Mastronicolis ◽  
A. Boura ◽  
A. Karaliota ◽  
P. Magiatis ◽  
N. Arvanitis ◽  
...  

2018 ◽  
Vol 6 (7) ◽  
Author(s):  
Annette Fagerlund ◽  
Solveig Langsrud ◽  
Birgitte Moen ◽  
Even Heir ◽  
Trond Møretrø

ABSTRACT Listeria monocytogenes is a foodborne pathogen that causes the often-fatal disease listeriosis. We present here the complete genome sequences of six L. monocytogenes isolates of sequence type 9 (ST9) collected from two different meat processing facilities in Norway. The genomes were assembled using Illumina and Nanopore sequencing data.


2018 ◽  
Vol 7 (13) ◽  
Author(s):  
Yanhong Liu ◽  
Aixia Xu ◽  
Pina M. Fratamico ◽  
Christopher H. Sommers ◽  
Luca Rotundo ◽  
...  

Listeria monocytogenes is an important foodborne pathogen that causes listeriosis. Here, we report the draft genome sequences of seven L. monocytogenes strains isolated from food, environmental, and clinical sources.


2017 ◽  
Vol 47 (2) ◽  
Author(s):  
Carla Susana Rodrigues ◽  
Cláudia Valéria Gonçalves Cordeiro de Sá ◽  
Cristiano Barros de Melo

ABSTRACT: Listeria monocytogenes is a relevant foodborne pathogen in public health, responsible for outbreaks of listeriosis often associated to the consumption of ready to eat meat, dairy and fishery products. Listeriosis is a serious disease that can lead to death and mainly affect children, the elderly and immunocompromised individuals. In pregnant women causes abortion or neonatal listeriosis. In Brazil, ready to eat food are appreciated and increasingly consumed by the population. Furthermore, products such as sausages, bologna, hams and cheeses have characteristics such as pH, Aw and sodium chloride content that favor the development of L. monocytogenes during their shelf life. The purpose of this paper was to present an overview of L. monocytogenes contamination in different meat, dairy and fishery products that are ready for consumption and thereby support the adoption of strategies to mitigate this risk, contributing to achieve the appropriate level protection for the consumers and thus strengthen Brazil's food safety system.


2017 ◽  
Vol 5 (10) ◽  
pp. 322-335
Author(s):  
Kankanit Pisamayarom ◽  
Piyasak Chaumpluk

Listeria monocytogenes, a foodborne pathogen, is considered as one of the major problems in food safety. With strong safety regulations, a monitoring measure is essential for protecting the health and safety of consumers. Thus, a reliable monitoring method is required. In this study, a rapid assay based on a combination of helicase dependent amplification (HDA) and DNA signal detection via nucleic acid hybridization in blue silver nanoplates (AgNPls) was established. The assay started directly after short term enrichment in terrific broth using cotton ball swapping technique on seafood surface. A HDA amplification of hly gene of L. monocytogenes at 65 °C allowed DNA signals to be increased, whereas the rendered DNA products were detected via nucleic acid hybridization with an oligonucleotide probe in AgNPls solution. The positive specimens induced blue silver nanoplates’ aggregation resulting in pale gray change to colorless, while the negative specimens showed the blue color of non-aggregated nanoplates. The method had a detection limit at 100 copies of L. monocytogenes DNA per 50 g of sample. This method was rapid, simple, did not require laboratory facilities and was suitable for field food safety monitoring


2018 ◽  
Vol 28 (1) ◽  
pp. 33
Author(s):  
Tati Ariyanti

Bacteriophages are viruses that have ability to attack bacterial cells in specific receptors, infect, multiply in bacterial cells and eventually lyse bacterial cells. This unique bacteriophage character is highly beneficial because it is harmless to mammalian cells and does not interfere with natural microbes. Bacteriophages are easy to obtain because they are widespread in the environment such as soil, water, animal, and farm waste or food. This paper describes the potential use of bacteriophages to detect pathogen and foodborne pathogen biocontrol. Bacteriophages are very potential to control the growth of pathogenic bacteria both in food industry and environment. Bacteriophages act as antibiotics, detection tool for pathogenic bacteria in the food chain, food biopreservative from pathogen bacteria contamination, and foodborne disease prevention. Although research on bacteriophage in Indonesia has not been widely reported, research on bacteriophage utilization is being carried on.


Microbiology ◽  
2011 ◽  
Vol 157 (11) ◽  
pp. 3150-3161 ◽  
Author(s):  
Jianshun Chen ◽  
Changyong Cheng ◽  
Ye Xia ◽  
Hanxin Zhao ◽  
Chun Fang ◽  
...  

Listeria monocytogenes is a foodborne pathogen causing listeriosis. Acid is one of the stresses that foodborne pathogens encounter most frequently. The ability to survive and proliferate in acidic environments is a prerequisite for infection. However, there is limited knowledge about the molecular basis of adaptation of L. monocytogenes to acid. Arginine deiminase (ADI) and agmatine deiminase (AgDI) systems are implicated in bacterial tolerance to acidic environments. Homologues of ADI and AgDI systems have been found in L. monocytogenes lineages I and II strains. Sequence analysis indicated that lmo0036 encodes a putative carbamoyltransferase containing conserved motifs and residues important for substrate binding. Lmo0036 acted as an ornithine carbamoyltransferase and putrescine carbamoyltransferase, representing the first example, to our knowledge, that catalyses reversible ornithine and putrescine carbamoyltransfer reactions. Catabolic ornithine and putrescine carbamoyltransfer reactions constitute the second step of ADI and AgDI pathways. However, the equilibrium of in vitro carbamoyltransfer reactions was overwhelmingly towards the anabolic direction, suggesting that catabolic carbamoyltransferase was probably the limiting step of the pathways. lmo0036 was induced at the transcriptional level when L. monocytogenes was subjected to low-pH stress. Its expression product in Escherichia coli exhibited higher catabolic carbamoyltransfer activities under acidic conditions. Consistently, absence of this enzyme impaired the growth of Listeria under mild acidic conditions (pH 4.8) and reduced its survival in synthetic human gastric fluid (pH 2.5), and corresponded to a loss in ammonia production, indicating that Lmo0036 was responsible for acid tolerance at both sublethal and lethal pH levels. Furthermore, Lmo0036 played a possible role in Listeria virulence.


Sign in / Sign up

Export Citation Format

Share Document