Rapid colorimetric sensing platform for the detection of Listeria monocytogenes foodborne pathogen

2016 ◽  
Vol 86 ◽  
pp. 1061-1066 ◽  
Author(s):  
Sahar Alhogail ◽  
Ghadeer A.R.Y. Suaifan ◽  
Mohammed Zourob
Electronics ◽  
2018 ◽  
Vol 7 (12) ◽  
pp. 347 ◽  
Author(s):  
Maria Chiriacò ◽  
Ilaria Parlangeli ◽  
Fausto Sirsi ◽  
Palmiro Poltronieri ◽  
Elisabetta Primiceri

A great improvement in food safety and quality controls worldwide has been achieved through the development of biosensing platforms. Foodborne pathogens continue to cause serious outbreaks, due to the ingestion of contaminated food. The development of new, sensitive, portable, high-throughput, and automated platforms is a primary objective to allow detection of pathogens and their toxins in foods. Listeria monocytogenes is one common foodborne pathogen. Major outbreaks of listeriosis have been caused by a variety of foods, including milk, soft cheeses, meat, fermented sausages, poultry, seafood and vegetable products. Due to its high sensitivity and easy setup, electrochemical impedance spectroscopy (EIS) has been extensively applied for biosensor fabrication and in particular in the field of microbiology as a mean to detect and quantify foodborne bacteria. Here we describe a miniaturized, portable EIS platform consisting of a microfluidic device with EIS sensors for the detection of L. monocytogenes in milk samples, connected to a portable impedance analyzer for on-field application in clinical and food diagnostics, but also for biosecurity purposes. To achieve this goal microelectrodes were functionalized with antibodies specific for L. monocytogenes. The binding and detection of L. monocytogenes was achieved in the range 2.2 × 103 cfu/mL to 1 × 102 with a Limit of Detection (LoD) of 5.5 cfu/mL.


Author(s):  
Maria Serena Chiriacò ◽  
Ilaria Parlangeli ◽  
Palmiro Poltronieri ◽  
Elisabetta Primiceri

A great improvement in food safety and quality controls worldwide has been achieved through the development of biosensing platforms. Foodborne pathogens continue to cause serious outbreaks due to the ingestion of contaminated food. The development of new, sensitive, portable, high-throughput, and automated platforms is a primary objective to allow detection of pathogens and their toxins in foods. Listeria monocytogenes is one common foodborne pathogen. Major outbreaks of listeriosis have been caused by a variety of foods, including milk, soft cheeses, meat, fermented sausages, poultry, seafood and vegetable products. Due to its high sensitivity and easy setup, electrochemical impedance spectroscopy (EIS) has been extensively applied for biosensor fabrication and in particular in the field of microbiology as a mean to detect and quantify foodborne bacteria. Here we describe a miniaturized, portable EIS platform consisting of a microfluidic device with EIS sensors for the detection of L. monocytogenes in milk samples, connected to a portable impedance analyzer for on-field application in clinical and food diagnostics but also for biosecurity purposes. To achieve this goal microelectrodes were functionalized with antibodies specific for L. monocytogenes. The binding and detection of L. monocytogenes was achieved in the range 2.2 x 103 cfu/ml to 1 x 102 with a Limit of Detection (LoD) of 5.5 cfu/ml.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 886
Author(s):  
Massimo Rippa ◽  
Riccardo Castagna ◽  
Domenico Sagnelli ◽  
Ambra Vestri ◽  
Giorgia Borriello ◽  
...  

Brucella is a foodborne pathogen globally affecting both the economy and healthcare. Surface Enhanced Raman Spectroscopy (SERS) nano-biosensing can be a promising strategy for its detection. We combined high-performance quasi-crystal patterned nanocavities for Raman enhancement with the use of covalently immobilized Tbilisi bacteriophages as high-performing bio-receptors. We coupled our efficient SERS nano-biosensor to a Raman system to develop an on-field phage-based bio-sensing platform capable of monitoring the target bacteria. The developed biosensor allowed us to identify Brucella abortus in milk by our portable SERS device. Upon bacterial capture from samples (104 cells), a signal related to the pathogen recognition was observed, proving the concrete applicability of our system for on-site and in-food detection.


2021 ◽  
Vol 262 ◽  
pp. 124289
Author(s):  
Umar Nishan ◽  
Ujala Sabba ◽  
Abdur Rahim ◽  
Muhammad Asad ◽  
Mohibullah Shah ◽  
...  

Biosensors ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 204
Author(s):  
Yanyan Cheng ◽  
Ling Liang ◽  
Fanggui Ye ◽  
Shulin Zhao

Metal–organic framework (MOF) nanozymes, as emerging members of the nanozymes, have received more and more attention due to their composition and structural characteristics. In this work, we report that mixed-valence state Ce-MOF (MVCM) has intrinsic haloperoxidase-mimicking activity. MVCM was synthesized by partial oxidation method using Ce-MOF as a precursor. In the presence of H2O2 and Br−, MVCM can catalyze oxidative bromination of chromogenic substrate phenol red (PR) to produce the blue product bromophenol blue (Br4PR), showing good haloperoxidase-like activity. Because of the special chromogenic substrate, we constructed a ratiometric colorimetric-sensing platform by detecting the absorbance of the MVCM-(PR, Br−) system at wavelengths of 590 and 430, for quantifying H2O2, where the detection limit of the H2O2 is 3.25 μM. In addition, the haloperoxidase-mimicking mechanism of the MVCM is proposed. Moreover, through enzyme kinetics monitoring, the Km (H2O2 and NH4Br) of the MVCM is lower than that of cerium oxide nanomaterials, indicating that the MVCM has a stronger binding affinity for H2O2 and NH4Br than other materials. This work provides more application prospects for the development of nanozymes in the field of biosensors in the future.


2006 ◽  
Vol 23 (2) ◽  
pp. 184-194 ◽  
Author(s):  
S.K. Mastronicolis ◽  
A. Boura ◽  
A. Karaliota ◽  
P. Magiatis ◽  
N. Arvanitis ◽  
...  

2018 ◽  
Vol 6 (7) ◽  
Author(s):  
Annette Fagerlund ◽  
Solveig Langsrud ◽  
Birgitte Moen ◽  
Even Heir ◽  
Trond Møretrø

ABSTRACT Listeria monocytogenes is a foodborne pathogen that causes the often-fatal disease listeriosis. We present here the complete genome sequences of six L. monocytogenes isolates of sequence type 9 (ST9) collected from two different meat processing facilities in Norway. The genomes were assembled using Illumina and Nanopore sequencing data.


2018 ◽  
Vol 7 (13) ◽  
Author(s):  
Yanhong Liu ◽  
Aixia Xu ◽  
Pina M. Fratamico ◽  
Christopher H. Sommers ◽  
Luca Rotundo ◽  
...  

Listeria monocytogenes is an important foodborne pathogen that causes listeriosis. Here, we report the draft genome sequences of seven L. monocytogenes strains isolated from food, environmental, and clinical sources.


2017 ◽  
Vol 47 (2) ◽  
Author(s):  
Carla Susana Rodrigues ◽  
Cláudia Valéria Gonçalves Cordeiro de Sá ◽  
Cristiano Barros de Melo

ABSTRACT: Listeria monocytogenes is a relevant foodborne pathogen in public health, responsible for outbreaks of listeriosis often associated to the consumption of ready to eat meat, dairy and fishery products. Listeriosis is a serious disease that can lead to death and mainly affect children, the elderly and immunocompromised individuals. In pregnant women causes abortion or neonatal listeriosis. In Brazil, ready to eat food are appreciated and increasingly consumed by the population. Furthermore, products such as sausages, bologna, hams and cheeses have characteristics such as pH, Aw and sodium chloride content that favor the development of L. monocytogenes during their shelf life. The purpose of this paper was to present an overview of L. monocytogenes contamination in different meat, dairy and fishery products that are ready for consumption and thereby support the adoption of strategies to mitigate this risk, contributing to achieve the appropriate level protection for the consumers and thus strengthen Brazil's food safety system.


2017 ◽  
Vol 5 (10) ◽  
pp. 322-335
Author(s):  
Kankanit Pisamayarom ◽  
Piyasak Chaumpluk

Listeria monocytogenes, a foodborne pathogen, is considered as one of the major problems in food safety. With strong safety regulations, a monitoring measure is essential for protecting the health and safety of consumers. Thus, a reliable monitoring method is required. In this study, a rapid assay based on a combination of helicase dependent amplification (HDA) and DNA signal detection via nucleic acid hybridization in blue silver nanoplates (AgNPls) was established. The assay started directly after short term enrichment in terrific broth using cotton ball swapping technique on seafood surface. A HDA amplification of hly gene of L. monocytogenes at 65 °C allowed DNA signals to be increased, whereas the rendered DNA products were detected via nucleic acid hybridization with an oligonucleotide probe in AgNPls solution. The positive specimens induced blue silver nanoplates’ aggregation resulting in pale gray change to colorless, while the negative specimens showed the blue color of non-aggregated nanoplates. The method had a detection limit at 100 copies of L. monocytogenes DNA per 50 g of sample. This method was rapid, simple, did not require laboratory facilities and was suitable for field food safety monitoring


Sign in / Sign up

Export Citation Format

Share Document