scholarly journals Abalone Collagen Extracts Potentiate Stem Cell Properties of Human Epidermal Keratinocytes

Marine Drugs ◽  
2019 ◽  
Vol 17 (7) ◽  
pp. 424
Author(s):  
Sajee Thaweekitphathanaphakdee ◽  
Pithi Chanvorachote ◽  
Sagaw Prateepchinda ◽  
Mattaka Khongkow ◽  
Apirada Sucontphunt

Stem cell activities in human tissues are critical for tissue integrity and function. Maintaining keratinocyte stem cells (KSCs) stemness helps sustain healthy skin by supporting keratinocyte renewal, involving the formation of epidermal barriers. In this study, abalone collagen (AC) extracts with molecular weights of 3 kDa (AC 1) and 300 kDa (AC 2) were compared to the epidermal growth factor (EGF) for their effects on cell proliferation, cell migration (wound healing), spheroid formation, and the expression level of stem cell markers on human keratinocytes (HaCaT cells). Cell viability was measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and cell proliferation was quantified by ATP and DNA content analysis and Sulforhodamine B (SRB) assays. Cell migration assay was determined using the scratch wound healing test. Spheroid formation was evaluated and the expression level of stem cell markers was investigated by western blot analysis. The results showed that AC 1 at the concentration of 100 µg/mL could stimulate HaCaT cell proliferation, migration, spheroid formation, and the expression level of stem cell markers (keratin 19, β-catenin, ALDH1A1) compared to the control. In conclusion, a smaller molecular weight of abalone collagen extract exhibits a better effect on keratinocytes proliferation, migration, and stemness, which could be a potential active ingredient in cosmeceutical products.

2010 ◽  
Vol 79 (1) ◽  
pp. 1 ◽  
Author(s):  
Young Hee Choi ◽  
Min Gyu Kim ◽  
Dong-Hyun Ahn ◽  
Seong Jin Cho ◽  
Soo Hee Hong ◽  
...  

PLoS ONE ◽  
2012 ◽  
Vol 7 (2) ◽  
pp. e29999 ◽  
Author(s):  
Xiaobo Liang ◽  
Shreya Bhattacharya ◽  
Gaurav Bajaj ◽  
Gunjan Guha ◽  
Zhixing Wang ◽  
...  

2018 ◽  
Vol 22 (4) ◽  
pp. 425-432
Author(s):  
J. A. Mogulevtseva ◽  
A. V. Mezentsev ◽  
S. A. Bruskin

Matrix metalloproteinases (MMPs) are important for the pathogenesis of psoriasis and other autoimmune disorders. In the extracellular matrix, accumulation of proinflammatory cytokines, such as interleukin 17A (IL-17A), leads to induction of several MMPs, including MMP1. MMPs change the composition and other properties of the extracellular matrix. These changes facilitate tissue remodeling and promote the development of psoriatic plaques. The aim of this study was to explore how MMP1 silencing might influence the biological effects of IL-17A on migration and proliferation of human epidermal keratinocytes and the expression of genes involved in their division and differentiation. The experiments were performed with MMP1-deficient and control epidermal keratinocytes, HaCaT-MMP1 and HaCaT-KTR, respectively. Cell proliferation and migration were assessed by comparative analysis of the growth curves and scratch assay, respectively. To quantify cell migration, representative areas of cell cultures were photographed at the indicated time points and compared to each other. Changes in gene expression were analyzed by real-time PCR. The obtained results demonstrated that MMP1 silencing in the cells treated with IL-17A resulted in downregulation of MMP9 and -12, FOSL1, CCNA2, IVL, KRT14 and -17 as well as upregulation of MMP2, CCND1 and LOR. Moreover, MMP1 silencing led to a decrease in cell proliferation and an impairment of cell migration. Thus, MMP1-deficiency in epidermal keratinocytes can be beneficial for psoriasis patients that experience an accumulation of IL-17 in lesional skin. Knocking MMP1 down could influence migration and proliferation of epidermal keratinocytes in vivo, as well as help to control the expression of MMP1, -2, -9 и -12, CCNA2, CCND1, KRT14 and -17 that are crucial for the pathogenesis of psoriasis.


2019 ◽  
Vol 1 (Supplement_2) ◽  
pp. ii8-ii9
Author(s):  
Takeshi Fujimori ◽  
Daisuke Ogawa ◽  
Kenta Suzuki ◽  
Masaaki Kochi ◽  
Yuki Shibayama ◽  
...  

Abstract INTRODUCTION (Pro)renin receptor(PRR) is part of the Wnt receptor complex. Wnt/β-catenin signaling pathway (Wnt signaling) plays important role in pathogenesis and self-renewal of glioblastoma (GBM), or differentiation of glioma stem cell. We previously reported that PRR activate Wnt signaling, PRR expression correlated with malignancy of glioma, and treatment with PRR siRNA reduced the proliferative capacity. This time, we have developed monoclonal antibodies against PRR and examined their effects in GBM. MATERIAL AND METHODS We used GBM cell line (U251MG and U87MG) and primary human glioma stem cell line (MGG23). Glioma stem-like cells were cultured and isolated by neurosphere method from U251MG and U87MG. PRR antibody was made targeting the extracellular domain of the PRR with rat lymph node method. WST-1 assay or MTT assay were performed to determine the cell proliferation. Apoptosis was examined by FITC labeled annexin V and propidium iodide with flow cytometry. We analyzed molecules of Wnt signaling and stem cell markers with qRT-PCR. RESULTS We observed that PRR antibody significantly reduced cell proliferation, decreased sphere formation. Antibody suppressed cell adherent in stem-like cell. Flow cytometry showed that antibody induced apoptosis. Antibody inhibited Wnt signaling and stem cell markers. CONCLUSIONS PRR antibody reduced cell proliferation and induced apoptosis through Wnt signaling. PRR antibody also suppressed stemness. Our results demonstrated that PRR was a potential target for future glioma therapy.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Francesca Diomede ◽  
Thangavelu Soundara Rajan ◽  
Valentina Gatta ◽  
Marco D’Aurora ◽  
Ilaria Merciaro ◽  
...  

Background. Neural crest-derived mesenchymal stem cells (MSCs) from human oral tissues possess immunomodulatory and regenerative properties and are emerging as a potential therapeutic tool to treat diverse diseases, such as multiple sclerosis, myocardial infarction, and connective tissue damages. In addition to cell-surface antigens, dental MSCs express embryonic stem cell markers as neural crest cells originate from the ectoderm layer. In vitro passages may eventually modify these embryonic marker expressions and other stemness properties, including proliferation. In the present study, we have investigated the expression of proteins involved in cell proliferation/senescence and embryonic stem cell markers during early (passage 2) and late passages (passage 15) in MSCs obtained from human gingiva, periodontal, and dental pulp tissues. Methods. Cell proliferation assay, beta galactosidase staining, immunocytochemistry, and real-time PCR techniques were applied. Results. Cell proliferation assay showed no difference between early and late passages while senescence markers p16 and p21 were considerably increased in late passage. Embryonic stem cell markers including SKIL, MEIS1, and JARID2 were differentially modulated between P2 and P15 cells. Discussion. Our results suggest that the presence of embryonic and proliferation markers even in late passage may potentially endorse the application of dental-derived MSCs in stem cell therapy-based clinical trials.


2011 ◽  
Author(s):  
Moon Nian Lim ◽  
Umapathy Thiageswari ◽  
Othman Ainoon ◽  
P. J. N. Baharuddin ◽  
R. A. Jamal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document