scholarly journals Cartilage Acidic Protein a Novel Therapeutic Factor to Improve Skin Damage Repair?

Marine Drugs ◽  
2021 ◽  
Vol 19 (10) ◽  
pp. 541
Author(s):  
Rute Castelo Félix ◽  
Liliana Anjos ◽  
Rita Alves Costa ◽  
Sophia Letsiou ◽  
Deborah Mary Power

Fish skin has been gaining attention due to its efficacy as a human-wound-treatment product and to identify factors promoting its enhanced action. Skin fibroblasts have a central role in maintaining skin integrity and secrete extra cellular matrix (ECM) proteins, growth factors and cytokines to rapidly repair lesions and prevent further damage or infection. The effects on scratch repair of the ubiquitous but poorly characterized ECM protein, cartilage acidic protein 1 (CRTAC1), from piscine and human sources were compared using a zebrafish SJD.1 primary fibroblast cell line. A classic in vitro cell scratch assay, immunofluorescence, biosensor and gene expression analysis were used. Our results demonstrated that the duplicate sea bass Crtac1a and Crtac1b proteins and human CRTAC-1A all promoted SJD.1 primary fibroblast migration in a classic scratch assay and in an electric cell impedance sensing assay. The immunofluorescence analysis revealed that CRTAC1 enhanced cell migration was most likely caused by actin-driven cytoskeletal changes and the cellular transcriptional response was most affected in the early stage (6 h) of scratch repair. In summary, our results suggest that CRTAC1 may be an important factor in fish skin promoting damage repair.

1998 ◽  
Vol 66 (5) ◽  
pp. 2143-2153 ◽  
Author(s):  
Mark S. Hanson ◽  
David R. Cassatt ◽  
Betty P. Guo ◽  
Nita K. Patel ◽  
Michael P. McCarthy ◽  
...  

ABSTRACT Borrelia burgdorferi, the spirochete that causes Lyme disease, binds decorin, a collagen-associated extracellular matrix proteoglycan found in the skin (the site of entry for the spirochete) and in many other tissues. Two borrelial adhesins that recognize this proteoglycan, decorin binding proteins A and B (DbpA and DbpB, respectively), have recently been identified. Infection of mice by low-dose B. burgdorferi challenge elicited antibodies against DbpA and DbpB that were sustained at high levels, suggesting that these antigens are expressed in vivo. Scanning immunoelectron microscopy showed that DbpA was surface accessible on intact borreliae. Passive administration of DbpA antiserum protected mice from infection following challenge with heterologous B. burgdorferi sensu stricto isolates, even when serum administration was delayed for up to 4 days after challenge. DbpA is the first antigen target identified that is capable of mediating immune resolution of early, localizedB. burgdorferi infections. DbpA immunization also protected mice from B. burgdorferi challenge; DbpB immunization was much less effective. DbpA antiserum inhibited in vitro growth of manyB. burgdorferi sensu lato isolates of diverse geographic, phylogenetic, and clinical origins. In combination, these findings support a role for DbpA in the immunoprophylaxis of Lyme disease and suggest that DbpA vaccines have the potential to eliminate early-stageB. burgdorferi infections.


2003 ◽  
Vol 177 (2) ◽  
pp. 249-259 ◽  
Author(s):  
JJ Gagliardino ◽  
H Del Zotto ◽  
L Massa ◽  
LE Flores ◽  
MI Borelli

The aim of this work was to study the possible relationship between pancreatic duodenal homeobox-1 (Pdx-1) and islet neogenesis-associated protein (INGAP) during induced islet neogenesis. Pregnant hamsters were fed with (S) and without (C) sucrose, and glycemia, insulin secretion in vitro, and pancreas immunomorphometric parameters were measured in their 7-day-old offspring. S offspring had significantly lower glycemic levels than C animals. Insulin release in response to increasing glucose concentrations in the incubation medium (2-16 mM glucose) did not increase in pancreata from either C or S offspring. However, pancreata from S offspring released more insulin than those from C animals. In S offspring, beta-cell mass, beta-cell replication rate and islet neogenesis increased significantly, with a simultaneous decrease in beta-cell apoptotic rate. INGAP- and Pdx-1-positive cell mass also increased in the islets and among acinar and duct cells. We found two subpopulations of Pdx-1 cells: INGAP-positive and INGAP-negative. Pdx-1/INGAP-positive cells did not stain with insulin, glucagon, somatostatin, pancreatic polypeptide, or neurogenin 3 antibodies. The increment of Pdx-1/INGAP-positive cells represented the major contribution to the Pdx-1 cell mass increase. Such increments varied among pancreas subsectors: ductal>insular>extrainsular. Our results suggested that INGAP participates in the regulation of islet neogenesis, and Pdx-1/INGAP-positive cells represent a new stem cell subpopulation at an early stage of development, highly activateable in neogenesis.


Open Biology ◽  
2011 ◽  
Vol 1 (4) ◽  
pp. 110023 ◽  
Author(s):  
Yuko Akai ◽  
Yumiko Kurokawa ◽  
Norihiko Nakazawa ◽  
Yuko Tonami-Murakami ◽  
Yuki Suzuki ◽  
...  

Condensin is required for chromosome dynamics and diverse DNA metabolism. How condensin works, however, is not well understood. Condensin contains two structural maintenance of chromosomes (SMC) subunits with the terminal globular domains connected to coiled-coil that is interrupted by the central hinge. Heterotrimeric non-SMC subunits regulate SMC. We identified a novel fission yeast SMC hinge mutant, cut14-Y1 , which displayed defects in DNA damage repair and chromosome segregation. It contains an amino acid substitution at a conserved hinge residue of Cut14/SMC2, resulting in diminished DNA binding and annealing. A replication protein A mutant, ssb1-418 , greatly alleviated the repair and mitotic defects of cut14-Y1 . Ssb1 protein formed nucleolar foci in cut14-Y1 cells, but the number of foci was diminished in cut14-Y1 ssb1-418 double mutants. Consistent with the above results, Ssb1 protein bound to single-strand DNA was removed by condensin or the SMC dimer through DNA reannealing in vitro . Similarly, RNA hybridized to DNA may be removed by the SMC dimer. Thus, condensin may wind up DNA strands to unload chromosomal components after DNA repair and prior to mitosis. We show that 16 suppressor mutations of cut14-Y1 were all mapped within the hinge domain, which surrounded the original L543 mutation site.


1996 ◽  
Vol 24 (6) ◽  
pp. 719-730 ◽  
Author(s):  
Katrin Neubauer ◽  
Thomas Knittel ◽  
Sabine Aurisch ◽  
Peter Fellmer ◽  
Giuliano Ramadori

Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1895
Author(s):  
Alžběta Dostálková ◽  
Kryštof Škach ◽  
Filip Kaufman ◽  
Ivana Křížová ◽  
Romana Hadravová ◽  
...  

A major structural retroviral protein, capsid protein (CA), is able to oligomerize into two different hexameric lattices, which makes this protein a key component for both the early and late stages of HIV-1 replication. During the late stage, the CA protein, as part of the Gag polyprotein precursor, facilitates protein–protein interactions that lead to the assembly of immature particles. Following protease activation and Gag polyprotein processing, CA also drives the assembly of the mature viral core. In the early stage of infection, the role of the CA protein is distinct. It controls the disassembly of the mature CA hexameric lattice i.e., uncoating, which is critical for the reverse transcription of the single-stranded RNA genome into double stranded DNA. These properties make CA a very attractive target for small molecule functioning as inhibitors of HIV-1 particle assembly and/or disassembly. Of these, inhibitors containing the PF74 scaffold have been extensively studied. In this study, we reported a series of modifications of the PF74 molecule and its characterization through a combination of biochemical and structural approaches. Our data supported the hypothesis that PF74 stabilizes the mature HIV-1 CA hexameric lattice. We identified derivatives with a higher in vitro stabilization activity in comparison to the original PF74 molecule.


1985 ◽  
Vol 100 (2) ◽  
pp. 545-551 ◽  
Author(s):  
E Wang

Mouse monoclonal antibody, S-30, was produced from hybridoma preparation from mice injected with the cytoskeleton extract of an in vitro aged culture of human fibroblasts derived from a 66-yr-old donor. The antibody stains positively the nuclei of the nonproliferating cells present predominantly in the senescent cultures of five selected fibroblast strains derived from donors of different age groups, whereas a negative reaction is observed in the cultures of their young counterparts. In the intermediate stage of the in vitro life span of these cell strains, a heterogeneous positive reaction for staining with S-30 antibody is observed in different subfractions of cell cultures. However, the expression of S-30 can be induced in the young fibroblasts at the early stage of their life by prolonged culturing to confluence. This induced expression of S-30 nuclear staining can be depleted upon subculturing at low cell density. Immunoelectron microscopy with colloidal gold-protein A complex demonstrates that the S-30 proteins are present in the nuclear plasma and at the region of nuclear envelope in a clustered arrangement. Immunoprecipitation of [3H]leucine labeled cell specimens shows that the antibody S-30 reacts with a protein with a molecular weight of approximately 57,000.


2017 ◽  
Vol 2017 ◽  
pp. 1-4
Author(s):  
Ying Ying ◽  
Xi Guo ◽  
Yiping Zhong ◽  
Canquan Zhou

Background. Previously, we found women with positive anticentromere antibody showed impaired potential of oocyte maturation and embryo cleavage; the possible mechanism behind this phenomenon was still unknown. Objective. Thus, the present study aimed to preliminarily explore whether ACA could penetrate into the living embryos and impair their developmental potential via in vitro coculture with mouse embryos. Methods. Mouse embryos were collected and used for in vitro culture with polyclonal anticentromere protein A (CENP-A) antibody; then, immunofluorescence assay was performed to determine the penetration of antibody into embryos, and embryo development potential was observed. Results. All embryos cultured with anti-CENP-A antibody exhibited immunofluorescence on the nucleus, while none of the embryos from the control groups showed immunofluorescence. Additionally, embryos cultured with anti-CENP-A antibody experienced significant growth impairment compared with controls. Conclusion. Mouse embryos may be a direct target for ACA in vitro prior to implantation. However, the precise mechanism needs further clarification.


Marine Drugs ◽  
2022 ◽  
Vol 20 (1) ◽  
pp. 61
Author(s):  
Sarah Geahchan ◽  
Parnian Baharlouei ◽  
Muhammed Azizur Rahman

Marine organisms harbor numerous bioactive substances that can be utilized in the pharmaceutical and cosmetic industries. Scientific research on various applications of collagen extracted from these organisms has become increasingly prevalent. Marine collagen can be used as a biomaterial because it is water soluble, metabolically compatible, and highly accessible. Upon review of the literature, it is evident that marine collagen is a versatile compound capable of healing skin injuries of varying severity, as well as delaying the natural human aging process. From in vitro to in vivo experiments, collagen has demonstrated its ability to invoke keratinocyte and fibroblast migration as well as vascularization of the skin. Additionally, marine collagen and derivatives have proven beneficial and useful for both osteoporosis and osteoarthritis prevention and treatment. Other bone-related diseases may also be targeted by collagen, as it is capable of increasing bone mineral density, mineral deposition, and importantly, osteoblast maturation and proliferation. In this review, we demonstrate the advantages of marine collagen over land animal sources and the biomedical applications of marine collagen related to bone and skin damage. Finally, some limitations of marine collagen are briefly discussed.


2011 ◽  
Vol 286 (27) ◽  
pp. 23763-23770 ◽  
Author(s):  
Barbara K. Fortini ◽  
Subhash Pokharel ◽  
Piotr Polaczek ◽  
Lata Balakrishnan ◽  
Robert A. Bambara ◽  
...  

Two processes, DNA replication and DNA damage repair, are key to maintaining genomic fidelity. The Dna2 enzyme lies at the heart of both of these processes, acting in conjunction with flap endonuclease 1 and replication protein A in DNA lagging strand replication and with BLM/Sgs1 and MRN/X in double strand break repair. In vitro, Dna2 helicase and flap endo/exonuclease activities require an unblocked 5′ single-stranded DNA end to unwind or cleave DNA. In this study we characterize a Dna2 nuclease activity that does not require, and in fact can create, 5′ single-stranded DNA ends. Both endonuclease and flap endo/exonuclease are abolished by the Dna2-K677R mutation, implicating the same active site in catalysis. In addition, we define a novel ATP-dependent flap endo/exonuclease activity, which is observed only in the presence of Mn2+. The endonuclease is blocked by ATP and is thus experimentally distinguishable from the flap endo/exonuclease function. Thus, Dna2 activities resemble those of RecB and AddAB nucleases even more closely than previously appreciated. This work has important implications for understanding the mechanism of action of Dna2 in multiprotein complexes, where dissection of enzymatic activities and cofactor requirements of individual components contributing to orderly and precise execution of multistep replication/repair processes depends on detailed characterization of each individual activity.


Author(s):  
László G. Kömüves ◽  
Donna S. Turner ◽  
Kathy S. McKee ◽  
Buford L. Nichols ◽  
Julian P. Heath

In this study we used colloidal gold probes to detect the intracellular localization of colostral immunoglobulins in intestinal epithelial cells of newborn piglets.Tissues were obtained from non-suckled newborn and suckled piglets aged between 1 hour to 1 month. Samples were fixed in 2.5 % glutaraldehyde, osmicated and embedded into Spurr’s resin. Thin (80 nm) sections were etched with 5% sodium ethoxide for 5 min, washed and treated with 4 % sodium-m-periodate in distilled water for 30 min. The sections were then first incubated with blocking buffer (2 % BSA, 0.25 % fish skin gelatin, 0.5 % Tween 20 in 10 mM Trizma buffer, pH=7.4 containing 500 mM NaCl) for 30 min followed by the immunoreagents diluted in the same buffer, 1 hr each. For the detection of pig immunoglobulins a rabbit anti-pig IgG antiserum was used followed by goat anti-rabbit IgG-Au10 or protein A-Au15 probes.


Sign in / Sign up

Export Citation Format

Share Document