scholarly journals Bioactive Molecules from Extreme Environments II

Marine Drugs ◽  
2021 ◽  
Vol 19 (11) ◽  
pp. 642
Author(s):  
Daniela Giordano

Marine organisms are known to produce a wide variety of natural products that are unique in terms of diversity, structural, and functional properties [...]

2011 ◽  
Vol 6 (2) ◽  
pp. 1934578X1100600
Author(s):  
Galeano J. Elkin ◽  
Jhon J. Rojas ◽  
Alejandro Martínez

Marine organisms represent a new extensive source for bioactive molecules. They have the potential to provide new therapeutic alternatives to treat human diseases. In this paper, we describe and discuss a variety of isolated and semisynthetic molecules obtained from marine sources. These compounds are in phase II, phase III and at the commercialization stage of new drug development. A description of the mechanism of action, dosage used and side effects are also reported. The positive results obtained from these studies have triggered the development of new studies to evaluate the prospects for utilization of marine organisms.


2019 ◽  
Vol 1 (1) ◽  
pp. 60-94 ◽  
Author(s):  
Lu Liu ◽  
Yao-Yao Zheng ◽  
Chang-Lun Shao ◽  
Chang-Yun Wang

Abstract Metabolites from marine organisms have proven to be a rich source for the discovery of multiple potent bioactive molecules with diverse structures. In recent years, we initiated a program to investigate the diversity of the secondary metabolites from marine invertebrates and their symbiotic microorganisms collected from the South China Sea. In this review, representative cases are summarized focusing on molecular diversity, mining, and application of natural products from these marine organisms. To provide a comprehensive introduction to the field of marine natural products, we highlight typical molecules including their structures, chemical synthesis, bioactivities and mechanisms, structure–activity relationships as well as biogenesis. The mining of marine-derived microorganisms to produce novel secondary metabolites is also discussed through the OSMAC strategy and via partial chemical epigenetic modification. A broad prospectus has revealed a plethora of bioactive natural products with novel structures from marine organisms, especially from soft corals, gorgonians, sponges, and their symbiotic fungi and bacteria.


2020 ◽  
Vol 28 (1) ◽  
pp. 196-210 ◽  
Author(s):  
Daisuke Uemura ◽  
Yoshinori Kawazoe ◽  
Toshiyasu Inuzuka ◽  
Yuki Itakura ◽  
Chiari Kawamata ◽  
...  

: Many natural products with extraordinary chemical structures and brilliant biological activities have been obtained from marine organisms. We have investigated such fascinating bioactive molecules, exemplified by the potent marine toxin palytoxin and the antitumor molecule halichondrin B, which has been developed as the anticancer drug Halaven®, to explore novel frontiers in organic chemistry and bioscience. Working within the traditional discipline, we have sought to acquire a deeper understanding of biological phenomena. We introduce here our major work along with up-todate topics. We isolated yoshinone A from marine cyanobacteria and completed a gram-scale synthesis. Yoshinone A is a novel polyketide that inhibited the differentiation of 3T3-L1 cells into adipocytes without significant cytotoxicity. The detailed mechanisms of action will be elucidated via further experiments in vitro and in vivo. In this study, we explore the true producers of okadaic acid and halichondrin B by immunostaining of Halichondria okadai with an antibody that was prepared using these natural products as an antigen. We will analyze isolated symbionts and reveal biosynthetic pathways.


Marine Drugs ◽  
2019 ◽  
Vol 18 (1) ◽  
pp. 9 ◽  
Author(s):  
Muhammad Zain ul Arifeen ◽  
Yu-Nan Ma ◽  
Ya-Rong Xue ◽  
Chang-Hong Liu

Growing microbial resistance to existing drugs and the search for new natural products of pharmaceutical importance have forced researchers to investigate unexplored environments, such as extreme ecosystems. The deep-sea (>1000 m below water surface) has a variety of extreme environments, such as deep-sea sediments, hydrothermal vents, and deep-sea cold region, which are considered to be new arsenals of natural products. Organisms living in the extreme environments of the deep-sea encounter harsh conditions, such as high salinity, extreme pH, absence of sun light, low temperature and oxygen, high hydrostatic pressure, and low availability of growth nutrients. The production of secondary metabolites is one of the strategies these organisms use to survive in such harsh conditions. Fungi growing in such extreme environments produce unique secondary metabolites for defense and communication, some of which also have clinical significance. Despite being the producer of many important bioactive molecules, deep-sea fungi have not been explored thoroughly. Here, we made a brief review of the structure, biological activity, and distribution of secondary metabolites produced by deep-sea fungi in the last five years.


2001 ◽  
Vol 268 (6) ◽  
pp. 1739-1748
Author(s):  
Aitor Hierro ◽  
Jesus M. Arizmendi ◽  
Javier De Las Rivas ◽  
M. Angeles Urbaneja ◽  
Adelina Prado ◽  
...  

2019 ◽  
Vol 15 (4) ◽  
pp. 338-344
Author(s):  
Abhitav Tiwari ◽  
Shambhawi Pritam ◽  
Keerti Mishra ◽  
Mehshara Khan ◽  
Neeraj Upmanyu ◽  
...  

“Nutrition” and “Pharmaceutical” together build up the perception of “Nutraceuticals” that refer to the food or dietary supplements that help to incorporate additional health benefits to the fundamental sustenance accomplished on daily basis. Each nutraceutical contains one or more bioactive molecules that are usually obtained by chemical and/ or biotechnological synthesis or by extraction from natural sources. Among the natural sources, marine bionetwork possess immense potential for the presence of bioactive compounds. Some of these bioactive compounds as isolated from marine sources, have potential use as nutraceuticals. This mini review provides a brief overview of nutraceutical compounds from marine sources that are currently under research and/or have been commercialized. A detailed discussion on the biochemical categories of compounds and the marine organisms that play as potential sources of these bioactive nutraceutical compounds have been included.


Sign in / Sign up

Export Citation Format

Share Document