scholarly journals Microalgae and Cyanobacteria Strains as Producers of Lipids with Antibacterial and Antibiofilm Activity

Marine Drugs ◽  
2021 ◽  
Vol 19 (12) ◽  
pp. 675
Author(s):  
Virginio Cepas ◽  
Ignacio Gutiérrez-Del-Río ◽  
Yuly López ◽  
Saúl Redondo-Blanco ◽  
Yaiza Gabasa ◽  
...  

Lipids are one of the primary metabolites of microalgae and cyanobacteria, which enrich their utility in the pharmaceutical, feed, cosmetic, and chemistry sectors. This work describes the isolation, structural elucidation, and the antibiotic and antibiofilm activities of diverse lipids produced by different microalgae and cyanobacteria strains from two European collections (ACOI and LEGE-CC). Three microalgae strains and one cyanobacteria strain were selected for their antibacterial and/or antibiofilm activity after the screening of about 600 strains carried out under the NoMorFilm European project. The total organic extracts were firstly fractionated using solid phase extraction methods, and the minimum inhibitory concentration and minimal biofilm inhibitory concentration against an array of human pathogens were determined. The isolation was carried out by bioassay-guided HPLC-DAD purification, and the structure of the isolated molecules responsible for the observed activities was determined by HPLC-HRESIMS and NMR methods. Sulfoquinovosyldiacylglycerol, monogalactosylmonoacylglycerol, sulfoquinovosylmonoacylglycerol, α-linolenic acid, hexadeca-4,7,10,13-tetraenoic acid (HDTA), palmitoleic acid, and lysophosphatidylcholine were found among the different active sub-fractions selected. In conclusion, cyanobacteria and microalgae produce a great variety of lipids with antibiotic and antibiofilm activity against the most important pathogens causing severe infections in humans. The use of these lipids in clinical treatments alone or in combination with antibiotics may provide an alternative to the current treatments.

2016 ◽  
Vol 9 (1) ◽  
pp. 30
Author(s):  
Wei Zhang ◽  
Jun Wang ◽  
Zhiyuan Mi ◽  
Jiangtao Su ◽  
Xiangyu You ◽  
...  

Although misuse and abuse of Cannabis is well known, the health benefits have been proved by various biomedical studies. Tetrahydrocannabinol (THC) is the major active substance in leaves of Cannabis, which is the common target for drug testing. In field drug testing, oral fluid (OF) has its unique advantages over other specimens such as blood, urine, and hair. Thus the study of THC in OF is gaining popularity in Cannabis research. In this review, extraction methods are introduced in three categories, which are Liquid-Liquid Extraction (LLE), Solid Phase Extraction (SPE), and Supercritical Fluid Extraction (SFE). Examples of application with each method will be covered. Advantages and disadvantages of these methods will be compared. In addition, methods in analysis following extraction will be briefly discussed.


2021 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
C.A. Lux ◽  
K. Biswas ◽  
M.W. Taylor ◽  
R.G. Douglas

Background: Despite best medical and surgical practice, some cases of chronic rhinosinusitis (CRS) can remain recalcitrant. Bacterial biofilms have been associated with the recalcitrance of sinonasal inflammation. Biofilms are highly resistant to commonly prescribed antibiotics. Accordingly, more effective antimicrobial treatment options are needed to treat refractory CRS. The aim of this study was to determine the in vitro efficacy of neutral electrolysed water (NEW) and povidone-iodine (PVI) against CRS-associated Staphylococcus aureus biofilms. Methods: Mature S. aureus biofilms were grown in a Centre for Disease Control (CDC) biofilm reactor. The antimicrobial activity of NEW, PVI and doxycycline was determined for both planktonic and biofilm cultures of a clinical S. aureus isolate using minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and minimum biofilm eradication concentration (MBEC) assays. Results: MICs and MBCs were determined for all antimicrobials. MBC values were similar to MICs for both antiseptics, but doxycycline MBCs were significantly higher than the associated MICs. Biofilms were highly resistant to NEW and doxycycline. The MBEC for doxycycline was between 500 and 1000 µg/mL. NEW was ineffective against biofilms and no MBEC could be determined. In contrast, a concentration of 10% of the commercial PVI solution (10 mg/mL PVI) led to effective eradication of mature biofilms. Conclusion: In this study, only PVI showed promising antibiofilm activity at physiological concentrations. The in vivo efficacy of PVI warrants further investigation of its potential as a treatment for recalcitrant CRS.


Separations ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 226
Author(s):  
Matteo Chiarello ◽  
Laura Anfossi ◽  
Simone Cavalera ◽  
Fabio Di Di Nardo ◽  
Thea Serra ◽  
...  

NanoMIPs that are prepared by solid phase synthesis have proven to be very versatile, but to date only limited attention has been paid to their use in solid phase extraction. Thus, since nanoMIPs show close similarities, in terms of binding behavior, to antibodies, it seems relevant to verify if it is possible to use them as mimics of the natural antibodies that are used in immunoextraction methods. As a proof-of-concept, we considered prepared nanoMIPs against fluoroquinolone ciprofloxacin. Several nanoMIPs were prepared in water with polymerization mixtures of different compositions. The polymer with the highest affinity towards ciprofloxacin was then grafted onto a solid support and used to set up a solid phase extraction–HPLC method with fluorescence detection, for the determination of fluoroquinolones in human urine. The method resulted in successful selection for the fluoroquinolone antibiotics, such that the nanoMIPs were suitable for direct extraction of the antibiotics from the urine samples at the µg mL−1 level. They required no preliminary treatment, except for a 1 + 9 (v/v) dilution with a buffer of pH 4.5 and they had good analyte recovery rates; up to 85% with precision in the range of 3 to 4.5%, without interference from the matrix. These experimental results demonstrate, for the first time, the feasibility of the use of nanoMIPs to develop solid phase extraction methods.


Author(s):  
RIMADANI PRATIWI ◽  
RASPATI D. MULYANINGSIH ◽  
NYI M. SAPTARINI

Objective: This study was aimed to understand and determine the effectiveness of allopurinol extraction in herbal medicine from three extraction methods based on parameters of accuracy and precision. Methods: The study consisted of three methods including dissolving and filtering, liquid-liquid extraction, and solid-phase extraction with mixed-mode cation exchanger (SPE-MCX). The procedures were carried out using NaOH and HCl in dissolving and filtering method; methanol, HCl, and ethyl acetate in liquid-liquid extraction; and NH4OH elution solvent in SPE-MCX. Results: The results showed that extraction effectiveness based on accuracy level was the dissolving and filtering method>SPE-MCX>liquid-liquid extraction with % recovery+SD of 91.314+2.903%, 87.533+4.950%, and 54.549+3.517%, respectively. The precision level was the dissolution and filtering method>SPE-MCX>liquid-liquid extraction based on % relative standard deviations (RSD) of 3.18%, 5.226%, and 6.446%, respectively. Conclusion: It can be concluded that the allopurinol extraction method with the highest effectiveness based on accuracy and precision parameters in herbal medicine is the dissolving and filtering method.


Author(s):  
Sheng Han ◽  
Xinyue Li ◽  
Hongmei Huang ◽  
Ting Wang ◽  
Zhenglu Wang ◽  
...  

The selection and spread of antibiotic resistance poses risks to public health by reducing the therapeutic potential of antibiotics against human pathogens. Wastewater-based epidemiology (WBE) is potentially the most reliable approach to estimate antibiotics use. Previous WBE studies used parent antibiotics as biomarkers, which may lead to overestimation since parent antibiotics may be directly disposed of. Using metabolites as biomarkers can avoid this drawback. This study developed a simultaneous solid-phase extraction coupled with ultra-high-performance liquid chromatography tandem mass spectrometry method for analyzing 12 antibiotics and human metabolites in wastewater to help assess health risk. Optimum conditions were achieved using a PEP cartridge at pH 3.0. The extraction efficiencies were 73.3~95.4% in influent and 72.0~102.7% in effluent for most of the target analytes. Method detection limit ranged from 0.1 to 1.5 ng/L for influent wastewater and 0.03 to 0.7 ng/L for effluent wastewater. A stability experiment showed that sulfonamide parents and their metabolites were stable at 4 °C, −20 °C and −80 °C, while macrolides metabolites were more stable than their corresponding parents at 4 °C and −20 °C. Finally, the method was applied to measure these analytes in wastewater samples collected from three Beijing WWTPs and to derive apparent removal rates. All metabolites were detected in wastewater samples with concentrations ranging from 1.2 to 772.2 ng/L in influent, from <MDL to 235.6 ng/L in effluent. The apparent removal rates of five metabolites were above 72.6%. These results set a solid foundation for applying WBE to evaluate antibiotics use and its public health effects.


2021 ◽  
Vol 16 (2) ◽  
pp. 83-93
Author(s):  
Bárbara Ellen Santos Carvalhais ◽  
Cristiana de Souza e Silva ◽  
Kênia Valéria dos Santos

Aim: To evaluate the activity of five antimicrobials against young and mature Stenotrophomonas maltophilia biofilms. Materials & methods: Nineteen clinical strains from hemoculture of hemodialysis patients were tested for biofilm kinetics, MIC and minimum biofilm inhibitory concentration (MBIC) in young and mature biofilms. Results: All strains were moderate biofilm producers. MIC showed total susceptibility to levofloxacin and trimethoprim-sulfamethoxazole and partial resistance to ceftazidime (63.2%) and gentamicin (21%). Young and mature biofilms showed the lowest MBIC/MIC ratio for gentamicin, chloramphenicol and levofloxacin, respectively. The highest MBIC/MIC was for trimethoprim-sulfamethoxazole (young) and ceftazidime (mature). Conclusion: Gentamicin displayed surprising activity against S. maltophilia biofilms. Chloramphenicol was indicated as a good option against young S. maltophilia biofilms, and trimethoprim-sulfamethoxazole showed limited antibiofilm activity.


Separations ◽  
2019 ◽  
Vol 6 (4) ◽  
pp. 53 ◽  
Author(s):  
Katarzyna Madej ◽  
Wojciech Piekoszewski

The current clinical and forensic toxicological analysis of body fluids requires a modern approach to sample preparation characterized by high selectivity and enrichment capability, suitability for micro-samples, simplicity and speed, and the possibility of automation and miniaturization, as well as the use of small amounts of reagents, especially toxic solvents. Most of the abovementioned features may be realized using so-called microextraction techniques which cover liquid-phase techniques (e.g., single-drop microextraction, SDME; dispersive liquid–liquid microextraction, DLLME; hollow-fiber liquid-phase microextraction, HF-LPME) and solid-phase extraction techniques (solid-phase microextraction, SPME; microextraction in packed syringes, MEPS; disposable pipette tip extraction, DPX; stir bar sorption extraction, SBSE). Some other extraction methodologies like dispersive solid-phase extraction (d-SPE) or magnetic solid-phase extraction (MSPE) can also be easily miniaturized. This review briefly describes and characterizes the abovementioned extraction methods, and then presents their current applications to the preparation of body fluids analyzed for bioactive compounds in combination with appropriate analytical methods, mainly chromatographic and related techniques. The perspectives of the analytical area we are interested in are also indicated.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Alberta Ade ◽  
Cedric D. K. Amengor ◽  
Abena Brobbey ◽  
Isaac Ayensu ◽  
Benjamin K. Harley ◽  
...  

A library of six novel phenylhydrazones were synthesized and evaluated for their in vitro antimicrobial and resistance modulating activity against a panel of Gram-positive, Gram-negative, and fungal species. The compounds were produced in good yields of 60–92% w/w and characterized using melting point, UV-visible spectroscopy, infrared, and nuclear magnetic resonance (1H, 13C, and DEPT-Q) techniques. Mass spectroscopy was used to confirm the identity of one of the most active compounds, 5 [SA5]. The phenylhydrazones showed activity against all the six selected microorganisms with minimum inhibitory concentration (MIC) values of the most active compounds, 1 [BP1] and 5 [SA5], at 138 µM (Klebsiella pneumoniae) and 165 µM (Streptococcus pneumoniae), respectively. Compound 1 [BP1] further demonstrated a high resistance modulatory activity at 1.078 µM against Streptococcus pneumoniae and Klebsiella pneumoniae.


Sign in / Sign up

Export Citation Format

Share Document