scholarly journals Particulate Air Pollution and Its Impact on Health in Vilnius and Kaunas

Medicina ◽  
2012 ◽  
Vol 48 (9) ◽  
pp. 70
Author(s):  
Hans Orru ◽  
Aida Laukaitienė ◽  
Ingrida Zurlytė

Particulate matter in outdoor air has a significant impact on health. Small particles, composed of a variety of organic and inorganic compounds, are inhaled deep into the respiratory tract. The mechanisms and outcomes are manifold, resulting mainly in cardiopulmonary diseases. The current study aimed to quantify the health effects of particulate pollutants in Vilnius and Kaunas. Material and Methods. For risk estimation, the methodology of health impact assessment was employed. The exposure was defined as annual PM2.5 levels for long-term exposure effects and daily PM10 averages for short-term exposure effects. The baseline mortality/morbidity data were retrieved from health registers and exposure-response relationships from previous epidemiological studies. For health impact calculations, the WHO-developed tool AirQ was also applied. Results. The annual average concentration of PM2.5 was 11 μg/m3 in Vilnius and 17.5 μg/m3 in Kaunas. The exposure above the natural background corresponded annually to 263 (95% CI, 68– 464) and 338 (95% CI, 86–605) premature deaths in Vilnius and Kaunas. This resulted in 3438 (95% CI, 905–5952) and 3693 (95% CI, 983–6322) years of life lost and in an average decrease in life expectancy of 0.43 (95% CI, 0.11–0.74) and 0.69 (95% CI, 0.18–1.19) years, respectively. In addition, 143 (95% CI, 86–200) and 129 (95% CI, 78–179) respiratory and 297 (95% CI, 188–377) and 267 (95% CI, 169–338) cardiovascular hospitalizations per year could be expected in Vilnius and Kaunas, respectively. Conclusions. There is substantial exposure to particulate matter in the main Lithuanian cities, which causes considerable adverse health effects. Traffic and domestic heating are considered locally the most important contributing factors to the degradation of air quality.

Author(s):  
N. A. S. Hamm

Epidemiological studies of the health effects of air pollution require estimation of individual exposure. It is not possible to obtain measurements at all relevant locations so it is necessary to predict at these space-time locations, either on the basis of dispersion from emission sources or by interpolating observations. This study used data obtained from a low-cost sensor network of 32 air quality monitoring stations in the Dutch city of Eindhoven, which make up the ILM (innovative air (quality) measurement system). These stations currently provide PM10 and PM2.5 (particulate matter less than 10 and 2.5 m in diameter), aggregated to hourly means. The data provide an unprecedented level of spatial and temporal detail for a city of this size. Despite these benefits the time series of measurements is characterized by missing values and noisy values. In this paper a space-time analysis is presented that is based on a dynamic model for the temporal component and a Gaussian process geostatistical for the spatial component. Spatial-temporal variability was dominated by the temporal component, although the spatial variability was also substantial. The model delivered accurate predictions for both isolated missing values and 24-hour periods of missing values (RMSE = 1.4 <i>&amp;mu;</i>g m<sup>&amp;minus;3</sup> and 1.8 <i>&amp;mu;</i>g m<sup>&amp;minus;3</sup> respectively). Outliers could be detected by comparison to the 95% prediction interval. The model shows promise for predicting missing values, outlier detection and for mapping to support health impact studies.


Author(s):  
Lu Yang ◽  
Hao Zhang ◽  
Xuan Zhang ◽  
Wanli Xing ◽  
Yan Wang ◽  
...  

Particulate matter (PM) is a major factor contributing to air quality deterioration that enters the atmosphere as a consequence of various natural and anthropogenic activities. In PM, polycyclic aromatic hydrocarbons (PAHs) represent a class of organic chemicals with at least two aromatic rings that are mainly directly emitted via the incomplete combustion of various organic materials. Numerous toxicological and epidemiological studies have proven adverse links between exposure to particulate matter-bound (PM-bound) PAHs and human health due to their carcinogenicity and mutagenicity. Among human exposure routes, inhalation is the main pathway regarding PM-bound PAHs in the atmosphere. Moreover, the concentrations of PM-bound PAHs differ among people, microenvironments and areas. Hence, understanding the behaviour of PM-bound PAHs in the atmosphere is crucial. However, because current techniques hardly monitor PAHs in real-time, timely feedback on PAHs including the characteristics of their concentration and composition, is not obtained via real-time analysis methods. Therefore, in this review, we summarize personal exposure, and indoor and outdoor PM-bound PAH concentrations for different participants, spaces, and cities worldwide in recent years. The main aims are to clarify the characteristics of PM-bound PAHs under different exposure conditions, in addition to the health effects and assessment methods of PAHs.


2016 ◽  
Author(s):  
Jianlin Hu ◽  
Shantanu Jathar ◽  
Hongliang Zhang ◽  
Qi Ying ◽  
Shu-Hua Chen ◽  
...  

Abstract. Organic aerosol (OA) is a major constituent of ultrafine particulate matter (PM0.1). Recent epidemiological studies have identified associations between PM0.1 OA and premature mortality and low birth weight. In this study, the source-oriented UCD/CIT model was used to simulate the concentrations and sources of primary organic aerosols (POA) and secondary organic aerosols (SOA) in PM0.1 in California for a 9-year (2000–2008) modeling period with 4 km horizontal resolution to provide more insights about PM0.1 OA for health effects studies. As a related quality control, predicted monthly average concentrations of fine particulate matter (PM2.5) total organic carbon at six major urban sites had mean fractional bias of −0.31 to 0.19 and mean fractional errors of 0.4 to 0.59. The predicted ratio of PM2.5 SOA/OA was lower than estimates derived from chemical mass balance (CMB) calculations by a factor of 2 ~ 3, which suggests the potential effects of processes such as POA volatility, additional SOA formation mechanism, and missing sources. OA in PM0.1, the focus size fraction of this study, is dominated by POA. Wood smoke is found to be the single biggest source of PM0.1 OA in winter in California, while meat cooking, mobile emissions (gasoline and diesel engines), and other anthropogenic sources (mainly solvent usage and waste disposal) are the most important sources in summer. Biogenic emissions are predicted to be the largest PM0.1 SOA source, followed by mobile sources and other anthropogenic sources, but these rankings are sensitive to the SOA model used in the calculation. Air pollution control programs aiming to reduce the PM0.1 OA concentrations should consider controlling solvent usage, waste disposal, and mobile emissions in California, but these findings should be revisited after the latest science is incorporated into the SOA exposure calculations. The spatial distributions of SOA associated with different sources are not sensitive to the choice of SOA model, although the absolute amount of SOA can change significantly. Therefore, the spatial distributions of PM0.1 POA and SOA over the 9-year study period provide useful information for epidemiological studies to further investigate the associations with health outcomes.


2018 ◽  
Vol 18 (20) ◽  
pp. 15219-15229 ◽  
Author(s):  
Hao Guo ◽  
Sri Harsha Kota ◽  
Kaiyu Chen ◽  
Shovan Kumar Sahu ◽  
Jianlin Hu ◽  
...  

Abstract. Health effects of exposure to fine particulate matter (PM2.5) in India were estimated in this study based on a source-oriented version of the Community Multi-scale Air Quality (CMAQ) model. Contributions of different sources to premature mortality and years of life lost (YLL) were quantified in 2015. Premature mortality due to cerebrovascular disease (CEVD) was the highest in India (0.44 million), followed by ischaemic heart disease (IHD, 0.40 million), chronic obstructive pulmonary disease (COPD, 0.18 million), and lung cancer (LC, 0.01 million), with a total of 1.04 million deaths. The states with highest premature mortality were Uttar Pradesh (0.23 million), Bihar (0.12 million), and West Bengal (0.10 million). The highest total YLL was 2 years in Delhi, and the Indo-Gangetic plains and eastern India had higher YLL (∼1 years) than other regions. The residential sector was the largest contributor to PM2.5 concentrations (∼40 µg m−3), total premature mortality (0.58 million), and YLL (∼0.2 years). Other important sources included industry (∼20 µg m−3), agriculture (∼10 µg m−3), and energy (∼5 µg m−3) with their national averaged contributions of 0.21, 0.12, and 0.07 million to premature mortality, and 0.12, 0.1, and 0.05 years to YLL. Reducing PM2.5 concentrations would lead to a significant reduction of premature mortality and YLL. For example, premature mortality in Uttar Pradesh (including Delhi) due to PM2.5 exposures would be reduced by 79 % and YLL would be reduced by 83 % when reducing PM2.5 concentrations to 10 µg m−3.


Author(s):  
Ran Huang ◽  
Yongtao Hu ◽  
Armistead G. Russell ◽  
James A. Mulholland ◽  
M. Talat Odman

Short-term exposure to fire smoke, especially particulate matter with an aerodynamic diameter less than 2.5 µm (PM2.5), is associated with adverse health effects. In order to quantify the impact of prescribed burning on human health, a general health impact function was used with exposure fields of PM2.5 from prescribed burning in Georgia, USA, during the burn seasons of 2015 to 2018, generated using a data fusion method. A method was developed to identify the days and areas when and where the prescribed burning had a major impact on local air quality to explore the relationship between prescribed burning and acute health effects. The results showed strong spatial and temporal variations in prescribed burning impacts. April 2018 exhibited a larger estimated daily health impact with more burned areas compared to Aprils in previous years, likely due to an extended burn season resulting from the need to burn more areas in Georgia. There were an estimated 145 emergency room (ER) visits in Georgia for asthma due to prescribed burning impacts in 2015 during the burn season, and this number increased by about 18% in 2018. Although southwestern, central, and east-central Georgia had large fire impacts on air quality, the absolute number of estimated ER asthma visits resulting from burn impacts was small in these regions compared to metropolitan areas where the population density is higher. Metro-Atlanta had the largest estimated prescribed burn-related asthma ER visits in Georgia, with an average of about 66 during the reporting years.


2007 ◽  
Vol 5 (1) ◽  
pp. 75-80
Author(s):  
Grażyna Nowicka

Epidemiological studies clearly indicate that both long- and short-term exposure to several environmental air pollutants cause significant increase in the risk of cardiovascular events, the observed strong relation between particulate matter air level and cardiovascular diseases may be explained by indirect or direct influence of these particles on different biological processes involved in disease development. Improvement of air quality standards and lowering of particulate matter exposure can significantly diminish cardiovascular disease risk and improve public health status.


2006 ◽  
Vol 25 (10) ◽  
pp. 559-579 ◽  
Author(s):  
P E Schwarze ◽  
J Øvrevik ◽  
M Låg ◽  
M Refsnes ◽  
P Nafstad ◽  
...  

Identifying the ambient particulate matter (PM) fractions or constituents, critically involved in eliciting adverse health effects, is crucial to the implementation of more cost-efficient abatement strategies to improve air quality. This review focuses on the importance of different particle properties for PM-induced effects, and whether there is consistency in the results from epidemiological and experimental studies. An evident problem for such comparisons is that epidemiological and experimental data on the effects of specific components of ambient PM are limited. Despite this, some conclusions can be drawn. With respect to the importance of the PM size-fractions, experimental and epidemiological studies are somewhat conflicting, but there seems to be a certain consistency in that the coarse fraction (PM10-2.5) has an effect that should not be neglected. Better exposure characterization may improve the consistency between the results from experimental and epidemiological studies, in particular for ultrafine particles. Experimental data indicate that surface area is an important metric, but composition may play an even greater role in eliciting effects. The consistency between epidemiological and experimental findings for specific PM-components appears most convincing for metals, which seem to be important for the development of both pulmonary and cardiovascular disease. Metals may also be involved in PM-induced allergic sensitization, but the epidemiological evidence for this is scarce. Soluble organic compounds appear to be implicated in PM-induced allergy and cancer, but the data from epidemiological studies are insufficient for any conclusions. The present review suggests that there may be a need for improvements in research designs. In particular, there is a need for better exposure assessments in epidemiological investigations, whereas experimental data would benefit from an improved comparability of studies. Combined experimental and epidemiological investigations may also help answer some of the unresolved issues.


2014 ◽  
Vol 14 (2) ◽  
pp. 957-968 ◽  
Author(s):  
D. Giannadaki ◽  
A. Pozzer ◽  
J. Lelieveld

Abstract. Fine particulate matter is one of the most important factors contributing to air pollution. Epidemiological studies have related increased levels of atmospheric particulate matter to premature human mortality caused by cardiopulmonary disease and lung cancer. However, a limited number of investigations have focused on the contribution of airborne desert dust particles. Here we assess the effects of dust particles with an aerodynamic diameter smaller than 2.5 μm (DU2.5) on human mortality for the year 2005. We used the EMAC atmospheric–chemistry general circulation model at high resolution to simulate global atmospheric dust concentrations. We applied a health impact function to estimate premature mortality for the global population of 30 yr and older, using parameters from epidemiological studies. We estimate a global cardiopulmonary mortality of about 402 000 in 2005. The associated years of life lost are about 3.47 million per year. We estimate the global fraction of the cardiopulmonary deaths caused by atmospheric desert dust to be about 1.8%, though in the 20 countries most affected by dust this is much higher, about 15–50%. These countries are primarily found in the so-called "dust belt" from North Africa across the Middle East and South Asia to East Asia


2018 ◽  
Author(s):  
Hao Guo ◽  
Sri Harsha Kota ◽  
Kaiyu Chen ◽  
Shovan Kumar Sahu ◽  
Jianlin Hu ◽  
...  

Abstract. Health effects of exposure to fine particulate matter (PM2.5) in India were estimated in this study based on a source-oriented version of the Community Multi-scale Air Quality (CMAQ) model. Contributions of different sources to premature mortality and years of life lost (YLL) were quantified in 2015. Premature mortality due to cerebrovascular disease (CEV) was the highest in India (0.44 million), followed by ischaemic heart disease (IHD, 0.40 million), chronic obstructive pulmonary disease (COPD, 0.18 million) and lung cancer (LC, 0.01 million), with a total of 1.04 million deaths. The states with highest premature mortality were Uttar Pradesh (0.23 million), Bihar (0.12 million) and West Bengal (0.10 million). The highest total YLL was two years in Delhi, and the Indo-Gangetic plains and east India had higher YLL (~ 1 years) than other regions. The residential sector was the largest contributor to PM2.5 concentrations (~ 40 µg/m3), total premature mortality (0.58 million), and YLL (~ 0.2 years). Other important sources included industry (~ 20 µg/m3), agriculture (~ 10 µg/m3), and energy (~ 5 µg/m3) with their national averaged contributions of 0.21, 0.12, and 0.07 million to premature mortality, and 0.12, 0.1, and 0.05 years to YLL. Reducing PM2.5 concentrations would lead to a significant reduction of premature mortality and YLL. For example, premature mortality in Uttar Pradesh (including Delhi) due to PM2.5 exposures would be reduced by 79 % and YLL would be reduced by 83 % when reducing PM2.5 concentrations to 10 µg/m3.


Author(s):  
Laia Palència ◽  
Brenda Biaani León-Gómez ◽  
Xavier Bartoll ◽  
Juli Carrere ◽  
Elia Díez ◽  
...  

Superblocks are currently being introduced in Barcelona to respond to the city’s scarcity of green spaces and high levels of air pollution, traffic injuries, and sedentariness. The aim is to calm the streets by reducing the number of square meters dedicated to private vehicles and to reclaim part of this public space for people. Salut als Carrers (Health in the Streets) is a project to evaluate the potential environmental and health effects of the superblock model with an equity perspective in Barcelona. This study aims to explain the various interventions implemented in different neighborhoods in Barcelona and the methods that will be used to evaluate them in a quasi-experimental and health impact assessment (HIA) approaches. Given the complexity of the intervention evaluated, the project employs mixed methodologies. Quantitative methods include: (a) a pre–post health survey of 1200 people randomly selected from the municipal register asked about self-perceived health and quality of life, social support, mental health, mobility, physical activity, neighborhood characteristics, and housing; (b) pre–post environmental measurements, mainly of nitrogen dioxide (NO2), particulate matter of less than 10 µm (PM10), and particulate matter of less than 2.5 µm (PM2.5) and black carbon; (c) pre–post environmental walkability measures using the Microscale Audit of Pedestrian Streetscapes (MAPS) tool; (d) use of public space and physical activity levels using the System for Observing Play and Recreation in Communities (SOPARC), a validated observation tool; (e) pre–post traffic injury measures with a comparison group; and (f) the comparison and integration of pre–post assessment with previous HIAs and the improvement of future HIAs. Qualitative studies will be performed to analyze residents’ perception of these effects by using: (a) various focus groups according to different participant characteristics who are more or less likely to use the superblocks; and (b) a guerrilla ethnography, which is a method that combines ethnographic observation and semi-structured interviews. This study, which evaluates the impact of an ambitious urban-renewal program on health, will help to assess the effectiveness of public policy in terms of health and health inequalities.


Sign in / Sign up

Export Citation Format

Share Document