scholarly journals Effects of Moderate- and High-Intensity Chronic Exercise on the Adiponectin Levels in Slow-Twitch and Fast-Twitch Muscles in Rats

Medicina ◽  
2019 ◽  
Vol 55 (6) ◽  
pp. 291 ◽  
Author(s):  
Jiménez-Maldonado ◽  
Virgen-Ortiz ◽  
Lemus ◽  
Castro-Rodríguez ◽  
Cerna-Cortés ◽  
...  

Background and objectives: Adipose tissue and skeletal muscle secrete adiponectin, a hormone abundantly secreted by adipocytes, that through the adiponectin receptor, regulate glucose and lipid metabolism. Adiponectin appears to protect skeletal muscles from inflammatory damage induced by oxidative stress. It has been suggested that decreased adiponectin levels could be associated with pathologic conditions, including obesity and diabetes. Furthermore, some studies suggest that exercise could have a beneficial effect by increasing adiponectin levels, but this observation remains controversial. It is also unknown if physical exercise modifies adiponectin expression in skeletal muscles. The aim of this study was to investigate the effect of chronic exercise on serum adiponectin and adiponectin expression in slow-twitch (soleus) and fast-twitch (plantaris) muscles in healthy rats. Materials and methods: Two-month-old male Wistar rats were randomly divided into three groups with n = 6 in each group: control (C), moderate-intensity training (MIT), and high-intensity training (HIT). The rats were conditioned to run on a treadmill for the 8-week period. Forty-eight hours after the last session, blood samples were collected for adiponectin measurements and total RNA was isolated from plantaris and soleus muscles to measure by RT-qPCR adiponectin receptor 1 and adiponectin mRNA expression level. Results: MIT and HIT groups had reduced adiponectin protein levels in serum and the plantaris muscle, but not changes in adiponectin protein were observed in the soleus muscle. No significant differences in Adiponectin receptor 1 (AdipoR1) gene expression were observed following intense or moderate exercise in either muscle group studied. Conclusions: Our study shows that decreasing levels of circulating adiponectin is a result of physical exercise and should not be generalized as a predictive marker of disease.

1982 ◽  
Vol 60 (5) ◽  
pp. 628-633 ◽  
Author(s):  
W. D. Daub ◽  
H. J. Green ◽  
M. E. Houston ◽  
J. A. Thomson ◽  
I. G. Fraser ◽  
...  

The influence of a program of high intensity training and of a combined program of high intensity training and prolonged submaximal training on adaptations to the vastus lateralis muscle was investigated in two groups of elite athletes. The high intensity training (HI) consisted of ice hockey practices and games over a 14-week period while the combined program (HI–LO) included the addition of supplementary sessions of cycling, three times per week, progressively increasing from 30 to 45 min per session and at an intensity of 70% [Formula: see text]. Determinations of enzyme activities representative of energy supplying pathways revealed no change in 3-hydroxyacl CoA dehydrogenase (HADH), total phosphorylase (PHOSP), phosphofructokinase (PFK), lactate dehydrogenase (LDH), and a 7% increase (p < 0.05) in succinate dehydrogenase (SDH). The addition of the supplementary program caused no further adaptation in the metabolic profile. Similarly, neither the HI nor the HI–LO program induced any alteration in the percentage fibre type (slow twitch (ST) vs. fast twitch (FT)) or the subtypes (FTa, FTb, FTc). Reductions in the size (p < 0.05) of ST fibres were noted for both the HI and the HI–LO training programs. In contrast, increases in capillarization (p < 0.05) were found for both the ST (23%) and FTa (32%) fibres for the HI–LO program whereas a reduction in capillarization (21%) occurred in the FTa fibres as a result of HI training only. It is concluded that metabolic differentiation does not appear to occur in a manner consistent with the conditions of energy expenditure at least for high intensity work.


2021 ◽  
Vol 53 (8S) ◽  
pp. 467-467
Author(s):  
Jesús D. Álvarez-Almeyda ◽  
Margarita Muñoz-Guevara ◽  
Sarai Sánchez-Duarte ◽  
Sergio Márquez-Gamiño ◽  
Karla S. Vera-Delgado ◽  
...  

1996 ◽  
Vol 271 (6) ◽  
pp. E1061-E1066 ◽  
Author(s):  
D. Meynial-Denis ◽  
M. Mignon ◽  
A. Miri ◽  
J. Imbert ◽  
E. Aurousseau ◽  
...  

Glutamine synthetase (GS) is a glucocorticoid-inducible enzyme that has a key role for glutamine synthesis in muscle. We hypothesized that the glucocorticoid induction of GS could be altered in aged rats, because alterations in the responsiveness of some genes to glucocorticoids were reported in aging. We compared the glucocorticoid-induced GS in fast-twitch and slow-twitch skeletal muscles (tibialis anterior and soleus, respectively) and heart from adult (age 6-8 mo) and aged (age 22 mo) female rats. All animals received dexamethasone (Dex) in their drinking water (0.77 +/- 0.10 and 0.80 +/- 0.08 mg/day per adult and aged rat, respectively) for 5 days. Dex caused an increase in both GS activity and GS mRNA in fast-twitch and slow-twitch skeletal muscles from adult and aged rats. In contrast, Dex increased GS activity in heart of adult rats, without any concomitant change in GS mRNA levels. Furthermore, Dex did not affect GS activity in aged heart. Thus the responsiveness of GS to an excess of glucocorticoids is preserved in skeletal muscle but not in heart from aged animals.


1983 ◽  
Vol 245 (1) ◽  
pp. R25-R31 ◽  
Author(s):  
G. Sjogaard

Sodium, potassium, and magnesium were analyzed in human slow-twitch (ST) and fast-twitch (FT) skeletal muscles. In contrast to other species, no relation was found between fiber composition and electrolyte distribution. In soleus (S), vastus lateralis (VL), and triceps brachii (TB) the overall mean values for 6 men and 6 women were 44 mmol K/100 g dry wt and 11 mmol Na/100 g dry wt; the intracellular concentrations were 161 mmol K/l and 26 mmol Na/l with no differences between the muscles. Analysis of fragments of single ST and FT fibers from each of the muscles also showed no difference between the fiber types in Na and K content. Small differences were seen between the muscles with regard to Mg, but these were not related to fiber composition compared with other species. During exercise to exhaustion (3 bouts of bicycling for 3 min at 325-395 W, 6 men) the extracellular electrolyte concentrations for Na, K, and Mg increased from 134 to 140, 4.5 to 5.8, and 0.75 to 0.87 mmol/l, respectively (P less than 0.05). In VL Na content increased from 9.8 to 16.5 mmol/100 g dry wt, while intracellular [Na] remained constant. In contrast, intracellular [K] decreased from 161 to 141 mmol/l (P less than 0.05). No such changes occurred in TB. In concert with other studies the present changes in electrolytes in the working muscles indicate that muscle fatigue may be related to changes at the muscle fiber membrane.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Pabodha Hettige ◽  
Uzma Tahir ◽  
Kiisa C. Nishikawa ◽  
Matthew J. Gage

Abstract Background Individual skeletal muscles have evolved to perform specific tasks based on their molecular composition. In general, muscle fibers are characterized as either fast-twitch or slow-twitch based on their myosin heavy chain isoform profiles. This approach made sense in the early days of muscle studies when SDS-PAGE was the primary tool for mapping fiber type. However, Next Generation Sequencing tools permit analysis of the entire muscle transcriptome in a single sample, which allows for more precise characterization of differences among fiber types, including distinguishing between different isoforms of specific proteins. We demonstrate the power of this approach by comparing the differential gene expression patterns of extensor digitorum longus (EDL), psoas, and soleus from mice using high throughput RNA sequencing. Results EDL and psoas are typically classified as fast-twitch muscles based on their myosin expression pattern, while soleus is considered a slow-twitch muscle. The majority of the transcriptomic variability aligns with the fast-twitch and slow-twitch characterization. However, psoas and EDL exhibit unique expression patterns associated with the genes coding for extracellular matrix, myofibril, transcription, translation, striated muscle adaptation, mitochondrion distribution, and metabolism. Furthermore, significant expression differences between psoas and EDL were observed in genes coding for myosin light chain, troponin, tropomyosin isoforms, and several genes encoding the constituents of the Z-disk. Conclusions The observations highlight the intricate molecular nature of skeletal muscles and demonstrate the importance of utilizing transcriptomic information as a tool for skeletal muscle characterization.


1987 ◽  
Vol 252 (4) ◽  
pp. C450-C453 ◽  
Author(s):  
L. E. Underwood ◽  
R. S. Williams

We have used blot hybridization techniques and a specific anti-sense RNA probe to determine whether variation in myoglobin gene expression among mammalian striated muscles is attributable to pretranslational regulatory events. We observed that myoglobin mRNA was expressed to approximately 10- and 5-fold greater levels, respectively, in cardiac and soleus (slow-twitch, oxidative, skeletal) muscles of adult rabbits than in tibialis anterior (fast-twitch, glycolytic, skeletal) muscles. Furthermore, when oxidative capacity of tibialis anterior muscles was increased by 21 days of indirect electrical stimulation, a model of exercise conditioning, myoglobin mRNA content increased approximately 15-fold. We conclude that pretranslational mechanisms are important in regulation of myoglobin gene expression in mammalian muscles.


2000 ◽  
Vol 88 (3) ◽  
pp. 904-916 ◽  
Author(s):  
G. R. Adams ◽  
F. Haddad ◽  
S. A. McCue ◽  
P. W. Bodell ◽  
M. Zeng ◽  
...  

Both slow-twitch and fast-twitch muscles are undifferentiated after birth as to their contractile protein phenotype. Thus we examined the separate and combined effects of spaceflight (SF) and thyroid deficiency (TD) on myosin heavy chain (MHC) gene expression (protein and mRNA) in muscles of neonatal rats (7 and 14 days of age at launch) exposed to SF for 16 days. Spaceflight markedly reduced expression of the slow, type I MHC gene by ∼55%, whereas it augmented expression of the fast IIx and IIb MHCs in antigravity skeletal muscles. In fast muscles, SF caused subtle increases in the fast IIb MHC relative to the other adult MHCs. In contrast, TD prevented the normal expression of the fast MHC phenotype, particularly the IIb MHC, whereas TD maintained expression of the embryonic/neonatal MHC isoforms; this response occurred independently of gravity. Collectively, these results suggest that normal expression of the type I MHC gene requires signals associated with weight-bearing activity, whereas normal expression of the IIb MHC requires an intact thyroid state acting independently of the weight-bearing activities typically encountered during neonatal development of laboratory rodents. Finally, MHC expression in developing muscles is chiefly regulated by pretranslational processes based on the tight relationship between the MHC protein and mRNA data.


2016 ◽  
Vol 37 (6) ◽  
pp. 225-233 ◽  
Author(s):  
Giorgia Valle ◽  
Barbara Vergani ◽  
Roberta Sacchetto ◽  
Carlo Reggiani ◽  
Edith De Rosa ◽  
...  

Author(s):  
Jonas Hokser Olesen ◽  
Jon Hagen Herskind ◽  
Katja Krustrup Pedersen ◽  
Kristian Overgaard

Purpose: Moderate elevations of [K+]o occur during exercise and have been shown to potentiate force during contractions elicited with subtetanic frequencies. Here, we investigated whether lactic acid (reduced chloride conductance), β2-adrenoceptor activation, and increased temperature would influence the potentiating effect of potassium in slow- and fast-twitch muscle. Methods: Isometric contractions were elicited by electrical stimulation at various frequencies in isolated rat soleus and extensor digitorum longus (EDL) muscles incubated at normal (4 mM) or elevated K+, in combination with either salbutamol (5 μM), lactic acid (18.1 mM), 9-AC (25 μM) or increased temperature (30 to 35°C). Results: Elevating [K+] from 4 mM to 7 mM (soleus) and 10 mM (EDL) potentiated isometric twitch and subtetanic force while slightly reducing tetanic. In EDL, salbutamol further augmented twitch force (+27±3 %, P<0.001) and subtetanic force (+22±4 %, P<0.001). In contrast, salbutamol reduced subtetanic force (-28±6 %, P<0.001) in soleus muscles. Lactic acid and 9-AC had no significant effects on isometric force of muscles already exposed to moderate elevations of [K+]o. The potentiating effect of elevated [K+]o was still well maintained at 35°C. Conclusion: Addition of salbutamol exerts a further force-potentiating effect in fast-twitch but not in slow-twitch muscles already potentiated by moderately elevated [K+]o, whilst neither lactic acid, 9-AC nor increased temperature exerts any further augmentation. However, the potentiating effect of elevated [K+]o was still maintained in the presence of these, thus emphasizing the positive influence of moderately elevated [K+]o for contractile performance during exercise.


Sign in / Sign up

Export Citation Format

Share Document