scholarly journals Detergent and Water Recovery from Laundry Wastewater Using Tilted Panel Membrane Filtration System

Membranes ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 260
Author(s):  
Nafiu Umar Barambu ◽  
Derrick Peter ◽  
Mohd Hizami Mohd Yusoff ◽  
Muhammad Roil Bilad ◽  
Norazanita Shamsuddin ◽  
...  

Increasing global concern on clean water scarcity and environmental sustainability drive invention in water reclamation technology. Laundry wastewater reclamation via membrane technology faces the challenge of membrane fouling. This paper assesses a tilting-the-filtration-panel filtration system for the treatment of real laundry wastewater filtration aimed for water and detergent reuse. Results showed that the panel tilting significantly improved fouling control and enhanced permeability due to enhanced contact of air bubbles with the membrane surface, which induced continuous detachment of foulant from the membrane surface. The combination of aeration rate and tilting angle resulted in up to 83% permeability enhancement from 109 to 221.4 ± 10.8 (L/m2·h·bar). The system also offers 32% detergent recovery. Overall findings suggest that the system offers an attractive approach for both fouling management and detergent recovery and can potentially be applied under a simple setup in which filtration can be driven by gravity/hydrostatic pressure.

Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1178
Author(s):  
Jenyuk Lohwacharin ◽  
Thitiwut Maliwan ◽  
Hideki Osawa ◽  
Satoshi Takizawa

The presence of multiple contaminant species in surface waters makes surface water treatment difficult to accomplish through a single process. Herein, we evaluated the ability of an integrated adsorption/ultrafiltration (UF) membrane filtration system to simultaneously remove phosphates and dissolved organic matter (DOM). When bare powdered activated carbon (PAC) and PAC impregnated with amorphous ferrihydrite (FHPAC) adsorbents were compared, FHPAC showed a greater adsorption rate and capacity for phosphate. FHPAC had a phosphate adsorption capacity of 2.32 mg PO43−/g FHPAC, even when DOM was present as a competing adsorbate. In a lab-scale hybrid FHPAC-UF system (i.e. integrated adsorption by FHPAC with UF membrane filtration), irreversible membrane fouling was ca. three times lower than that in a PAC-UF system. When membrane fouling in the PAC-UF system was described with pore blockage models, we found that the main cause of fouling was bacterial deposition on the membrane surface. CLSM analysis determined that the chemical composition of foulants in the PAC-UF system included higher proportions of proteins, nucleic acids, and alpha-polysaccharides than that in the FHPAC-UF system. Overall, FHPAC’s ability to undergo ligand exchanges with DOM helped to reduce the nutrients and bacteria that cause biofouling to accumulate on the membrane surface.


2005 ◽  
Vol 5 (5) ◽  
pp. 1-8 ◽  
Author(s):  
K.Y. Choi ◽  
B.A. Dempsey

The objective of the research was to evaluate in-line coagulation to improve performance during ultrafiltration (UF). In-line coagulation means use of coagulants without removal of coagulated solids prior to UF. Performance was evaluated by removal of contaminants (water quality) and by resistance to filtration and recovery of flux after hydraulic or chemical cleaning (water production). We hypothesized that coagulation conditions inappropriate for conventional treatment, in particular under-dosing conditions that produce particles that neither settle nor are removed in rapid sand filters, would be effective for in-line coagulation prior to UF. A variety of pre-treatment processes for UF have been investigated including coagulation, powdered activated carbon (PAC) or granular activated carbon (GAC), adsorption on iron oxides or other pre-formed settleable solid phases, or ozonation. Coagulation pre-treatment is often used for removal of fouling substances prior to NF or RO. It has been reported that effective conventional coagulation conditions produced larger particles and this reduced fouling during membrane filtration by reducing adsorption in membrane pores, increasing cake porosity, and increasing transport of foulants away from the membrane surface. However, aggregates produced under sweep floc conditions were more compressible than for charge neutralization conditions, resulting in compaction when the membrane filtration system was pressurized. It was known that the coagulated suspension under either charge-neutralization or sweep floc condition showed similar steady-state flux under the cross-flow microfiltration mode. Another report on the concept of critical floc size suggested that flocs need to reach a certain critical size before MF, otherwise membranes can be irreversibly clogged by the coagulant solids. The authors were motivated to study the effect of various coagulation conditions on the performance of a membrane filtration system.


2004 ◽  
Vol 4 (5-6) ◽  
pp. 215-222 ◽  
Author(s):  
A.R. Costa ◽  
M.N. de Pinho

Membrane fouling by natural organic matter (NOM), namely by humic substances (HS), is a major problem in water treatment for drinking water production using membrane processes. Membrane fouling is dependent on membrane morphology like pore size and on water characteristics namely NOM nature. This work addresses the evaluation of the efficiency of ultrafiltration (UF) and Coagulation/Flocculation/UF performance in terms of permeation fluxes and HS removal, of the water from Tagus River (Valada). The operation of coagulation with chitosan was evaluated as a pretreatment for minimization of membrane fouling. UF experiments were carried out in flat cells of 13.2×10−4 m2 of membrane surface area and at transmembrane pressures from 1 to 4 bar. Five cellulose acetate membranes were laboratory made to cover a wide range of molecular weight cut-off (MWCO): 2,300, 11,000, 28,000, 60,000 and 75,000 Da. Severe fouling is observed for the membranes with the highest cut-off. In the permeation experiments of raw water, coagulation prior to membrane filtration led to a significant improvement of the permeation performance of the membranes with the highest MWCO due to the particles and colloidal matter removal.


Membranes ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 369
Author(s):  
Shengji Xia ◽  
Xinran Zhang ◽  
Yuanchen Zhao ◽  
Fibor J. Tan ◽  
Pan Li ◽  
...  

The membrane separation process is being widely used in water treatment. It is very important to control membrane fouling in the process of water treatment. This study was conducted to evaluate the efficiency of a pre-oxidation-coagulation flat ceramic membrane filtration process using different oxidant types and dosages in water treatment and membrane fouling control. The results showed that under suitable concentration conditions, the effect on membrane fouling control of a NaClO pre-oxidation combined with a coagulation/ceramic membrane system was better than that of an O3 system. The oxidation process changed the structure of pollutants, reduced the pollution load and enhanced the coagulation process in a pre-oxidation-coagulation system as well. The influence of the oxidant on the filtration system was related to its oxidizability and other characteristics. NaClO and O3 performed more efficiently than KMnO4. NaClO was more conducive to the removal of DOC, and O3 was more conducive to the removal of UV254.


2018 ◽  
Vol 19 (3) ◽  
pp. 855-863 ◽  
Author(s):  
T. Miyoshi ◽  
Y. Takahashi ◽  
T. Suzuki ◽  
R. Nitisoravut ◽  
C. Polprasert

Abstract This study investigated the performance of a hybrid membrane filtration system to produce industrial water from highly-colored surface water. The system consists of a membrane filtration process with appropriate pretreatments, including coagulation, pre-chlorination, and anion exchange (IE) process. The results of the pilot-scale experiments revealed that the hybrid system can produce treated water with color of around 5 Pt-Co, dissolved manganese concentration of no more than 0.05 mg/L, and a silt density index (SDI) of no more than 5 when sufficient coagulant and sodium hypochlorite were dosed. Although the IE process effectively reduced the color of the water, a moderate increase in the color of the IE effluent was observed when there was a significant increase in the color of the raw water. This resulted in a severe membrane fouling, which was likely to be attributed to the excess production of inorganic sludge associated with the increased coagulant dosage required to achieve sufficient reduction of color. Such severe membrane fouling can be controlled by optimising the backwashing and relaxation frequencies during the membrane filtration. These results indicate that the hybrid system proposed is a suitable technology for treating highly-colored surface water.


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3533
Author(s):  
Ahmad Aliyan Alif Ismail ◽  
Sri Mulyati ◽  
Sri Aprilia ◽  
Mohd Hizami Mohd Yusoff ◽  
Normi Izati Mat Nawi ◽  
...  

Membrane bioreactors (MBRs) are established technology for treatment of domestic and industrial wastewater because they offer a small footprint and high quality of effluent, in addition to lower excess sludge. However, their widespread applications are still limited by higher expenditure for compensating for membrane fouling. In this study, polysulfone (PSF)-based ultrafiltration membranes were developed and integrated with a tilted panel system for fouling control in activated sludge filtration. The results show an enhanced performance of filtration system thanks to the mutual advantage of the tilted panel system and the membrane properties. Both membranes showed a clear trend of higher permeability with respect to the tilted panel parameters, namely, higher tilting angle, higher aeration rate, and shorter intermittent/switching period. PSF-1 (1 wt% polyethylene glycol (PEG) additive) shows significantly better performance than PSF-3 (3 wt% PEG additive) although their mean flow pore size, structural properties, and contact angle do not differ significantly. PSF-1 shows superior filterability performance of about 45% for panel tilting angles of 20° at an aeration rate of 1.8 L·min−1, and 11% for a switching period of 1 min compared with PSF-3. The key property enhancing the performance of the PSF-1 is its narrower distribution of pore size. Overall results suggest that an optimum system could be achieved by optimizing both the filtration system and the membrane material properties.


Author(s):  
A. U. Krupp ◽  
I. M. Griffiths ◽  
C. P. Please

Membrane fouling during particle filtration occurs through a variety of mechanisms, including internal pore clogging by contaminants, coverage of pore entrances and deposition on the membrane surface. In this paper, we present an efficient method for modelling the behaviour of a filter, which accounts for different retention mechanisms, particle sizes and membrane geometries. The membrane is assumed to be composed of a series of, possibly interconnected, pores. The central feature is a conductivity function , which describes the blockage of each individual pore as particles arrive, which is coupled with a mechanism to account for the stochastic nature of the arrival times of particles at the pore. The result is a system of ordinary differential equations based on the pore-level interactions. We demonstrate how our model can accurately describe a wide range of filtration scenarios. Specifically, we consider a case where blocking via multiple mechanisms can occur simultaneously, which have previously required the study through individual models; the filtration of a combination of small and large particles by a track-etched membrane and particle separation using interconnected pore networks. The model is significantly faster than comparable stochastic simulations for small networks, enabling its use as a tool for efficient future simulations.


Author(s):  
Aklilu T. G. Giorges ◽  
John A. Pierson

Membrane filtration is one of the methods for separating targeted material from a fluid stream. Membrane based filtration is applied in many areas of processing to separate and concentrate fluids. However, fouling and film growth at the filter surface is a major problem that causes loss in efficiency. The cake buildup during the filtration process is investigated experimentally to understand the affect of flow dynamics on the cake characteristics, shape and associated resistance. The experiments were conducted without and with shear generated using an impeller operated at various rotational speeds. The results illustrate that indeed the cake shape and character are affected by the flow dynamics that eventually influence filtration resistance. Likewise the filtrate rate and the cake shape significantly affect the flow dynamics. Furthermore, the filtration resistance is not only affected by the thickness of the cake, but also by how the cake is formed. After similar volumes of filtrate, the flux rate of 120 Lm−2hr−1 for 4.4 mm thick and 1.8 g cake is observed for dead-end filtration, while the flux rate of 600 Lm−2hr−1 for 1.1 mm thick and 0.35 g cake where observed with a shearing rate of 630 s−1. Understanding the size and characters of cake buildup is very important to designing a system to overcome the drawbacks associated with membrane fouling. Moreover, developing a technology with the cleaning process that removes or eliminates cake and maintains a reasonable flux for an extended period requires a thorough understanding of the filtration system geometry and flow dynamics.


MEMBRANE ◽  
2013 ◽  
Vol 38 (5) ◽  
pp. 207-214
Author(s):  
Yoshihisa Fujii ◽  
Sadaki Samitsu ◽  
Izumi Ichinose

Sign in / Sign up

Export Citation Format

Share Document