scholarly journals Cleaning Methods for Ceramic Ultrafiltration Membranes Affected by Organic Fouling

Membranes ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 131
Author(s):  
Kamila Gruskevica ◽  
Linda Mezule

The use of ceramic membranes in the treatment and processing of various liquids, including those of organic origin, has increased tremendously at the industrial level. Apart from the selection of the most appropriate membrane materials and operational conditions, suitable membrane cleaning procedures are a must to minimize fouling and increase membrane lifespan. The review summarizes currently available and practiced non-reagent and cleaning-in-place methods for ceramic membranes that are used in the treatment of organic liquids, thus causing organic fouling. Backflushing, backwashing, and ultrasound represent the most often used physical methods for reversible fouling treatment. At the same time, the use of alkalis, e.g, sodium hydroxide, acids, or strong oxidants are recommended for cleaning of irreversible fouling treatment.

Author(s):  
Kamila Gruskevica ◽  
Martins Strods ◽  
Janis Rubulis ◽  
Linda Mezule

Hydrolysis of the lignocellulosic biomass results in the release of high-value chemicals that during industrial processing can be recovered with membrane technologies. To maintain an effective performance of the membranes used in the technological processing of biomass, their regular cleaning is essential. Although several guidelines may be found for membrane cleaning in the cases of organic fouling, the data for cleaning membranes fouled by hydrolyzed lignocellulosic biomass is limited. Current research is aimed to evaluate physical (air backpulse) and common cheap chemical membrane cleaning methods. The results showed that air backpulse alone had a minor (9%) effect on the membrane cleaning. The alternation of NaOH (1 %) solution with the NaClO (200 mg/L of Free chlorine) was the most effective approach for membrane cleaning. The cleaning effectiveness was 95.1 % for 50 nm membrane and 89 % for 200 nm membrane, indicating that membranes used for hydrolyzed lignocellulosic biomass filtration can be effectively cleaned using affordable and accessible chemicals.


2005 ◽  
Vol 51 (6-7) ◽  
pp. 181-192 ◽  
Author(s):  
Z. Lewandowski ◽  
H. Beyenal

The goal of this presentation is to identify biofouling mechanisms that cause undesirable effects to the membrane separation processes of flux decline and pressure drop. The underlying assumption of this presentation is that biofouling is unavoidable and that the operator cannot eliminate it entirely. This premise justifies research efforts toward understanding the mechanisms by which biofouling affects the membrane processes, rather than expecting that technology can entirely eliminate membrane biofouling in the near future. An improved understanding of biofouling mechanisms may lead to better membrane design, better membrane modules, and better membrane cleaning procedures.


Author(s):  
Olav Fyrileiv ◽  
Mark Marley ◽  
Sune Pettersen

As the easy oil is more or less gone, the typical offshore development faces several challenges in the future. These may be related to ultra deep water or difficult operational conditions like high pressure and temperatures. In addition there are often challenges related to flow, for example wax or hydrates during shut-downs or in tail production. Prevention of wax and hydrates is often solved by injection of chemicals or alternatively by some sort of heating, e.g. direct electrical heating. It may also to some degree be solved by superior thermal insulation or a combination of the methods mentioned. A thick insulation coating may give additional challenges with respect to submerged weight. Pipe-in-pipe (PIP) designs, where the flowline is insulated and covered by an outer pipe, solve this challenge and are becoming more and more popular. However, the pipe-in-pipe concepts also provide some specific challenges. DNV has recently been involved in a PIP project with quite challenging operational conditions. The combination of high temperature and high pressure (HTHP) and a corrosive well fluid with a buried pipe-in-pipe without any release of axial force leads to a very conservative design using conventional design approach. This challenge can be solved by applying a stochastic design approach avoiding conservative assumptions on top of each other. A probabilistic analysis targeting an acceptable probability of failure according to DNV-OS-F101 [1] resulted in an optimised design with a balanced selection of input parameters and avoiding ultra-conservative, worst case input combinations.


2008 ◽  
Vol 57 (3) ◽  
pp. 457-463 ◽  
Author(s):  
C. Brepols ◽  
K. Drensla ◽  
A. Janot ◽  
M. Trimborn ◽  
N. Engelhardt

Systematically testing alternative cleaning agents and cleaning procedures on a large scale municipal membrane bioreactor, the Erftverband optimized the cleaning strategies and refined the original cleaning procedures for the hollow fiber membranes in use. A time-consuming, intensive ex-situ membrane cleaning twice a year was initially the regular routine. By introducing the effective means of cleaning in place in use today, which employs several acidic and oxidative/alkaline cleaning steps, intensive membrane cleaning could be delayed for years. An overview and an assessment of various cleaning strategies for large scale plants are given.


2017 ◽  
Vol 76 (11) ◽  
pp. 3160-3170 ◽  
Author(s):  
Wanzhu Zhang ◽  
Lin Wang ◽  
Bingzhi Dong

Abstract The fouling behavior during forward osmosis (FO) was investigated. Tannic acid was used as a model organic foulant for natural organic matter analysis since the main characteristics are similar, and calcium ions were added at different concentrations to explore the anti-pollution capability of FO membranes. The initial permeate flux and calcium ions strength were varied in different operating conditions to describe membrane fouling with membrane cleaning methods. The observed flux decline in FO changed dramatically with the type of foulant and the type of draw solution used to provide the osmotic driving force. Calcium ions aggravated membrane fouling and decreased transmembrane flux. Membrane cleaning methods included physical and physicochemical approaches, and there was no obvious difference among the typical cleaning methods (i.e., membrane flushing with different types of cleaning fluids at various crossflow velocities and backwashing with varying osmotic driving forces) with respect to flux recovery. Ultrasonic cleaning damaged the membrane structure and decreased permeate flux, and reverse diffusion of salt from the draw solution to the feed side accelerated after cleaning.


2016 ◽  
Vol 192 ◽  
pp. 271-281 ◽  
Author(s):  
Joshuah K. Stolaroff ◽  
Congwang Ye ◽  
James S. Oakdale ◽  
Sarah E. Baker ◽  
William L. Smith ◽  
...  

Purpose-designed, water-lean solvents have been developed to improve the energy efficiency of CO2 capture from power plants, including CO2-binding organic liquids (CO2BOLs) and ionic liquids (ILs). Many of these solvents are highly viscous or change phases, posing challenges for conventional process equipment. Such problems can be overcome by encapsulation. Micro-Encapsulated CO2 Sorbents (MECS) consist of a CO2-absorbing solvent or slurry encased in spherical, CO2-permeable polymer shells. The resulting capsules have diameters in the range of 100–600 μm, greatly increasing the surface area and CO2 absorption rate of the encapsulated solvent. Encapsulating these new solvents requires careful selection of shell materials and fabrication techniques. We find several common classes of polymers are not compatible with MECS production, but we develop two custom formulations, a silicone and an acrylate, that show promise for encapsulating water-lean solvents. We make the first demonstration of an encapsulated IL for CO2 capture. The rate of CO2 absorption is enhanced by a factor of 3.5 compared to a liquid film, a value that can be improved by further development of shell materials and fabrication techniques.


2021 ◽  
Author(s):  
Sarah Shim

During the past decade, the growth in membrane research and technology has advanced and multiplied in usage for many industries including water and wastewater. A major limitation of the application is due to membrane fouling. In this work, the construction, start-up calibration and testing of a membrane unit, as well as an examination into the fouling and cleaning aspect of the ceramic membranes are investigated. An aqueous solution containing precipitate is fed to the unit in order to observe fouling behaviour. Effluent wastewater from a bioreactor, CUBEN, is also tested with the unit and membrane cleaning is performed using various chemical agents. For both chemically enhanced backwash (CEB) and membrane soaking, hydrochloric acid cleaning agent «1 %w) produces best flux recoveries of 72.7% and 82%, respectively. All permeate effluent analysis, resulted in a suspended solids concentration <3 mgIL and turbidities. < 1 NTU, which both meet Ontario regulation limits.


2021 ◽  
Author(s):  
Sarah Shim

During the past decade, the growth in membrane research and technology has advanced and multiplied in usage for many industries including water and wastewater. A major limitation of the application is due to membrane fouling. In this work, the construction, start-up calibration and testing of a membrane unit, as well as an examination into the fouling and cleaning aspect of the ceramic membranes are investigated. An aqueous solution containing precipitate is fed to the unit in order to observe fouling behaviour. Effluent wastewater from a bioreactor, CUBEN, is also tested with the unit and membrane cleaning is performed using various chemical agents. For both chemically enhanced backwash (CEB) and membrane soaking, hydrochloric acid cleaning agent «1 %w) produces best flux recoveries of 72.7% and 82%, respectively. All permeate effluent analysis, resulted in a suspended solids concentration <3 mgIL and turbidities. < 1 NTU, which both meet Ontario regulation limits.


Sign in / Sign up

Export Citation Format

Share Document