scholarly journals Tribological Behavior of As-Cast and Aged AlCoCrFeNi2.1 CCA

Metals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 208 ◽  
Author(s):  
Fevzi Kafexhiu ◽  
Bojan Podgornik ◽  
Darja Feizpour

In the present study, wear behavior as a function of aging time was evaluated for the AlCoCrFeNi2.1 eutectic complex, concentrated alloy (CCA) consisting of B2 (BCC), and L12 (FCC) lamellae in the as-cast state. By aging the material at 800 °C up to 500 h, precipitation of a fine, evenly dispersed micro-phase inside the L12 takes place. From 500 h to 1000 h of aging, precipitates coarsen by the Ostwald ripening mechanism. Reciprocating wear tests were characterized by a prevailing abrasive wear mechanism, while adhesive and delamination wear components change with aging conditions. The L12 phase with lower hardness in the as-cast material preferentially deformed during the wear test, which was not the case after aging the material, i.e., with the presence of precipitates. Aging-induced changes show a similar trend for the coefficient of friction and L12 + precipitates phase fraction, whereas changes in specific wear rate are in a good agreement with changes in B2 phase fraction. In general, aging the AlCoCrFeNi2.1 CCA at 800 °C up to 500 h decreases its coefficient of friction due to reduced adhesive wear component and enhances its wear performance through precipitation strengthening.

2013 ◽  
Vol 440 ◽  
pp. 88-91
Author(s):  
P.M. Madhankumar ◽  
S. Ilaiyavel

The knowledge of the properties of the coating in terms of wear resistance is of paramount importance in order to prevent the formation of severe damages. In this study, the wear performances of Zirconium oxide (ZrO2) coating over the surface of electro less nickel plating on aluminum and tool steel substrate is analyzed. The surface morphology of coatings was examined by Scanning Electron Microscope (SEM) and Energy Dispersive X-ray Spectroscopy (EDX) .The wear tests were performed in a pin on disc apparatus as per ASTM G-99 Standard. The coefficient of friction and wear loss are evaluated. The results of the wear test established that coated pins exhibited the lowest average coefficient of friction and the lowest wear loss when compared with uncoated pins.


2021 ◽  
Vol 63 (3) ◽  
pp. 259-265
Author(s):  
Halil Kılıç ◽  
Cenk Mısırlı ◽  
İbrahim Mutlu

Abstract This paper presents the findings of comparative research conducted to find out the braking performance of a Mo/NiCrBSi coated automobile brake disc. The friction and wear behavior of the Mo/NiCrBSi coating (CD) used for the disc material was evaluated using a laboratory scale disc-pad dynamometer and compared with a reference disc (RD). The coating was deposited by means of the atmospheric plasma spray process on a grey cast iron substrate. Braking tests were performed according to the SAE-J2430 test standard. Disc microstructures were characterized by SEM and XRD. It was found that the bonding strength was good with an infinite rating between the accumulated coating layer and the substrate. The results show that the coated brake disc has a comparable coefficient of friction and that the amount of wear is lower than that of the reference disc. The addition of ductile phases to the disc coating was beneficial in reducing the coefficient of friction to an acceptable degree and also effectively improving wear resistance.


2017 ◽  
Vol 25 (3) ◽  
pp. 193-198 ◽  
Author(s):  
A. Madhanagopal ◽  
S. Gopalakannan

This study determines the friction and the wear properties of the unidirectional glass epoxy composite with Gr, SiC TiO2 powder by using pin on disk apparatus. This tribological data is obtained in dry sliding condition for a constant sliding time of 30 minutes. Test specimens are prepared using hand lay-up process and by varying the different (2, 5, 7) percentage each of graphite and SiC, TiO2 particles addition for the combination of fiber and matrix. The tests are performed by varying the operating parameters of contact pressure (p) and velocity (v). The composites (2% 5%, and 7%) are worn by dry sliding at the steel counter face under ambient conditions. The coefficient of friction reaches maximum of 0.78 at 2 kg load, 2 m/s velocity with testing time duration of 24 min. whereas 5%, 7% sample shows the coefficient of friction 0.28, 0.25 respectively. The specific wear rate value drops to 0.79 (mm3/N-m×10−6) at 2 kg load at 2 m/s velocity for the 5% specimen. The maximum reduction in the specific wear rate at 3 kg load, 1m/s velocity is 32.7 percentages, 5.63 percentages for the 5,7 percentage specimen compared to 2% specimen for the graphite and SiC, TiO2 particle filled composite specimen respectively. The SEM images are also taken to support the results.


2015 ◽  
Vol 29 (06n07) ◽  
pp. 1540021
Author(s):  
Jin Cheol Ha ◽  
Yun-Hae Kim ◽  
Myeong-Hoon Lee ◽  
Kyung-Man Moon ◽  
Se-Ho Park

This experiment has examined the corrosion and tribological properties of basalt fiber reinforced composite materials. There were slight changes of weight after the occurring of corrosion based on time and H 2 SO 4 concentration, but in general, the weight increased. It is assumed that this happens due to the basalt fiber precipitate. Prior to the corrosion, friction-wear behavior showed irregular patterns compared to metallic materials, and when it was compared with the behavior after the corrosion, the coefficient of friction was 2 to 3 times greater. The coefficient of friction of all test specimen ranged from 0.1 to 0.2. Such a result has proven that the basalt fiber, similar to the resin rubber, shows regular patterns regardless of time and H 2 SO 4 concentration because of the space made between resins and reinforced materials.


2014 ◽  
Vol 616 ◽  
pp. 270-274
Author(s):  
Yoon Seok Lee ◽  
Mitsuo Niinomi ◽  
Masaaki Nakai ◽  
Kengo Narita ◽  
Junko Hieda ◽  
...  

The wear mechanisms of conventional Ti–6Al–4V extra-low interstitial (Ti64) and the new Ti–29Nb–13Ta–4.6Zr (TNTZ) were studied to investigate the wear properties of Ti64/TNTZ for application in spinal fixation devices. Ti64 and TNTZ balls and discs were first prepared as wear-test specimens. A ball-on-disc frictional wear-testing machine was used in air to perform the frictional wear tests of the Ti64 and TNTZ discs mated against Ti64 and TNTZ balls. The wear mechanisms were investigated using a scanning electron microscopy to analyze the worn surfaces and wear debris. The volume losses for the TNTZ discs were larger than those for the Ti64 ones, regardless of the mating ball material. Furthermore, the morphologies of the wear tracks and the debris of the Ti64 and TNTZ discs were different, suggesting that the wear mechanisms for the Ti64 and TNTZ discs were abrasive and delamination wear caused by mild and severe subsurface deformations of the Ti64 and TNTZ, respectively, regardless of the mating ball material.


2021 ◽  
Vol 7 (2) ◽  
pp. 9-16
Author(s):  
K. Tripathi ◽  
S. W. Lee

This study investigates the effect of laser surface texturing (LST) on the friction and wear behavior of grey cast iron (GCI) of internal combustion engine (ICE) cylinder in lubricated conditions. The dimples having diameter of about (58-60) μm and depth of about 10 μm were created on the surface with various dimple densities ranging from 5 to 50%. A ball-on-disc friction tests were performed for all the specimens under 5W30 and 15W50 oils with different viscosities. The tests were carried out at a load of 5N and speed of 5cm/s. The coefficient of friction of the dimpled specimen was reduced significantly by approximately 32% as compared to the polished speciemen. Specimen with 15% dimples exhibits the lowest coefficient of friction of all the dimpled specimens in both low and high viscous oils. The high viscous oil found to be more efficient regarding coefficeint of friction compared to the low viscous oil. The degree of wear of the specimens was analyzed on the basis of wear scar developed on the counter surface as it supplements the wear during the friction tests. The resistance to wear of the sliding specimens was found to be increased in high viscous oil compared to that in low viscous oil.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Rama Krishna S. ◽  
Patta Lokanadham

Purpose The purpose of the present paper aims to, study the coefficient of friction and wear behavior of nickel based super alloys used in manufacturing of gas and steam turbine blades. In present paper, parametric study focuses on normal load, dry sliding velocity and contact temperature influence on coefficient of friction and wear of a nickel based super alloy material. Design/methodology/approach Experimental investigation is carried out to know the effect of varying load at constant sliding velocity and varying sliding velocity at constant load on coefficient of friction and wear behavior of nickel based super alloy material. The experiments are carried out on a nickel based super alloy material using pin on disk apparatus by load ranging from 30 N to 90 N and sliding velocity from 1.34 m/s to 2.67 m/s. The contact temperature between pin and disk is measured using K-type thermocouple for all test conditions to know effect of contact temperature on coefficient of friction and wear behavior of nickel based super alloy material. Analytical calculations are carried out to find wear rate and wear coefficient of the test specimen and are compared with experimental results for validation of experimental setup. Regression equations are generated from experimental results to estimate coefficient of friction and wear in the range of test conditions. Findings From the experimental results, it is observed that by increasing the normal load or sliding velocity, the contact temperature between the pin and disk increases, the coefficient of friction decreases and wear increases. Analysis of variance (ANOVA) is used to study the influence of individual parameters like normal load, dry sliding speed and sliding distance on the coefficient of friction and wear of nickel based super alloy material. Originality/value This is the first time to study effect of contact temperature on the coefficient of friction and wear behavior of nickel-based super alloy used for gas and steam turbine blades. Separate regression equations have been developed to determine the coefficient of friction and wear for the entire range of speed of gas turbine blades made of nickel based super alloy. The regression equations are also validated against experimental results.


2012 ◽  
Vol 263-266 ◽  
pp. 95-98
Author(s):  
Zhu Jun Li ◽  
Zheng Wu Jiang ◽  
Huan Wei Zhou

In this paper, the effect of hardness and position on the 40CrNiMoA steel and 18Cr2Ni4WA steel friction pairs’ friction coefficient and wear volume were studied without lubrication, at room temperature. The results show that: Under test conditions, the fluctuation in the friction coefficient is bigger, when the up specimen is the harder 18Cr2Ni4WA steel. And when the up specimen is the softer 40CrNiMoA steel, the fluctuation in the friction coefficient is relatively small. When the up specimen is the 40CrNiMoA steel, the hardness of 40CrNiMoA steel is a relatively small impact on the average value of the coefficient of friction.When the up specimen is the softer 40CrNiMoA steel, the coefficient of friction is relatively larger than that when the up specimen is the harder 18Cr2Ni4WA steel. The wear volumes is relate to the position of friction pair. When the up specimen is the harder 18Cr2Ni4WA steel, both sides of the friction pairs has the same wear volumes when the hardness of 40CrNiMoA steel is about 43HRC. When the up specimen is softer 40CrNiMoA steel, and its hardness is about 54HRC, the wear volumes curves of two materials intersect.


2015 ◽  
Vol 642 ◽  
pp. 19-23
Author(s):  
Shang Guan Bao ◽  
Yi Fan Wang ◽  
Zhen Hai Yang ◽  
Yong Zhen Zhang ◽  
Yue Chen ◽  
...  

Using C/C composite and chrome bronze as a friction couple, the frictional wear properties of C/C composite with electric current is studied in this paper. The results have shown that current, velocity and load are important factors to affect the frictional wear properties of C/C composite with electric current. Wear rate of C/C composite increases with the increase of arc energy .The coefficient of friction and the wear rate increase with the increase of velocity when the electric current is constant of 100A. The coefficient of friction increases but the wear rate decreases with the increase of load when the electric current is constant at 100A. The coefficient of friction decreases but the wear rate increases with the increase of current when the load is constant of 80N. Comparing with no electric current, the coefficient of friction of C/C composite with electric current decreases but the wear rate of that increases obviously. The wear mechanism of C/C composite is mainly of electric wear caused by arc erosion under the condition of current-carrying.


Sign in / Sign up

Export Citation Format

Share Document