scholarly journals Microstructure Evaluation, Quantitative Phase Analysis, Strengthening Mechanism and Influence of Hybrid Reinforcements (β-SiCp, Bi and Sb) on the Collective Mechanical Properties of the AZ91 Magnesium Matrix

Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 898
Author(s):  
Song-Jeng Huang ◽  
Sikkanthar Diwan Midyeen ◽  
Murugan Subramani ◽  
Chao-Ching Chiang

Gravitational melt-stir casting produced hybrid nano-reinforcements (β-SiCp) and micro-reinforcements (Bi and Sb) of AZ91 composites. SiCp-diffused discontinuous β-Mg17Al12 precipitation with a vital factor of SiC was exhibited at the grain boundary region, formulated Mg3Si throughout the composite and changed the present Mg0.97Zn0.03 phases. The creation of Mg2Si (cubic) and SiC (rhombohedral axes) enhanced the microhardness by 18.60% in a 0.5 wt.% SiCp/AZ91 matrix. The microhardness of 1 wt.% SiCp/AZ91 was slightly reduced after Mg0.97Zn0.03 (hexagonal) reduction. The best ultimate tensile value obtained was about 169.33 MPa (increased by 40.10%) in a 0.5 wt.% SiCp/AZ91 matrix. Microelements Bi and Sb developed Mg3Bi2, Mg3Sb2 and monoclinic C60 phases. The best peak yield strength of 82.75 MPa (increased by 19.85%) was obtained with the addition of 0.5 wt.% SiCp/1 wt.% Bi/0.4 wt.% Sb. The mismatch of the coefficient of thermal expansion of segregated particles and the AZ91 matrix, the shear transfer effect and the Orowan effect, combined with the quantitative value of phase existence, improved the compressive strengths of the composites with 0.5 wt.% β-SiCp, 1 wt.% β-SiCp and 0.5 wt.% SiCp/1 wt.% Bi/0.4 wt.% Sb by 2.68%, 6.23% and 8.38%, respectively. Notably, the Charpy impact strengths of 0.5 wt.% and 1 wt.% β-SiCp-added AZ91 composites were enhanced by 236% (2.89 J) and 192% (2.35 J), respectively. The addition of Bi and Sb with SiCp resulted in the formation of a massive phase of brittle Al6Mn. Al–Mn-based phases (developed huge voids and cavities) remarkably reduced impact values by 80% (0.98 J). The discussion covers the quantitative analyses of X-ray diffraction, optical microscopy and scanning electron microscopy results and fracture surfaces.

1982 ◽  
Vol 26 ◽  
pp. 119-128 ◽  
Author(s):  
Ronald C. Gehringer ◽  
Gregory J. McCarthy ◽  
R.G. Garvey ◽  
Deane K. Smith

Solid solutions are pervasive in minerals and in industrial inorganic materials. The analyst is often called upon to provide qualitative and quantitative X-ray phase analysis for specimens containing solid solutions when all that is available are Powder Diffraction File (PDF) data or commercial standards for the end members. In an earlier paper (1) we presented several examples of substantial errors in accuracy of quantitative analysis that can arise when the crystallinity and composition of the analyte standard do not match those of the analyte in the sample of interest. We recommended that to obtain more accurate quantitative analyses, one should determine the analyte composition (e.g., from XRF on grains seen in a SEM or from comparison of cell parameters with those of the end members) and synthesize an analyte standard with this composition and with a crystallinity approximating that of the analyte (e.g., as determined from peak breadth or α1/ α2 splitting).


2015 ◽  
Vol 787 ◽  
pp. 568-572 ◽  
Author(s):  
A. Radha ◽  
K.R. Vijayakumar

Composite materials like Aluminium metal matrix composite is playing a very important role in manufacturing industries e.g. automobile and aerospace industries, due to their superior properties such as light weight, low density, high specific modulus, high fatigue strength etc., In this study Aluminium(Al 6061) is reinforced with Silicon Carbide particles and fabricated by Stir Casting Technique (vortex method). The MMC rectangular bars (samples) are prepared with Al6061 and SiC (28 µ size) as the reinforced particles by weight fraction from 0%, 5%, 10%, and 15% of SiC. The microstructure analysis and Mechanical properties like Tensile Strength, Vickers Hardness and Charpy Impact Strength were investigated on prepared specimens. It is observed that the properties are increased with increasing of reinforced specimens by weight fraction.


2009 ◽  
Vol 44 (11) ◽  
pp. 2759-2764 ◽  
Author(s):  
X. J. Wang ◽  
X. S. Hu ◽  
K. Wu ◽  
M. Y. Zheng ◽  
L. Zheng ◽  
...  

1990 ◽  
Vol 5 (3) ◽  
pp. 121-124 ◽  
Author(s):  
David J. Devlin ◽  
Kamal E. Amin

AbstractThe relative intensities ratios for the determination of the relative amounts of alpha and beta phases in silicon nitride and the relative amounts of delta yttrium disilicate (Y2Si2O7) and nitrogen apatite [Y5(SiO4)3N] are reported. These constants were determined using an iterative method applicable when the pure phases are not easily prepared. In addition, a calibration curve was obtained for the quantitative measurement of free silicon in silicon nitride over the range 0 to 0.3% by weight of Si.


2015 ◽  
Vol 1101 ◽  
pp. 79-82
Author(s):  
B.C. Suresh ◽  
S.B. Arun

Now a day’s composite materials are taking very important role in industrial growth. Composite materials are widely used in Automobiles, aerospace, submarine and also in other major fields, due to their special characteristics like light weight, high strength, stiffness, corrosion resistance. The determination of Coefficient of Thermal Expansion (CTE) of MMCs is important to aid its usage in high temperature environment as in the case of automobile combustion chamber. In these applications the stability of the composites over a long period of operation is a critical design considerationPresent work deals with the thermal property evaluation of the Al alloy / alumina metal matrix composite developed using the Stir Casting with chilling route technique. LM 26 Al alloy is being selected as the matrix material as it is a potential alloy for automotive piston applications. Al alloy / alumina MMCs was cast under end chilling technique by dispersing the reinforcement from 6 to 12 wt% the steps of 3% to study the variation in its thermal properties. At the same time chill material is also changed (Copper and MS) for different composition of MMCs cast to study the thermal behavior variations. After casting the required MMC, test specimens were prepared as per the standards to conduct thermal conductivity (K) tests and coefficient of thermal expansion (CTE) tests. Above tests were repeated for different composites containing different weight % of dispersed cast using different chills.


2018 ◽  
Vol 280 ◽  
pp. 58-64
Author(s):  
Tinesha Selvaraj ◽  
Johar Banjuraizah ◽  
S.F. Khor ◽  
M.N. Mohd Zainol

A facile strategy was proposed to incorporate the dopant Fe into 8YSZ-based material, which can be potentially applied as solid electrode materials for Solid Oxide Fuel Cells (SOFC). In this study, 8YSZ powder was investigated in terms of densification, conductivity and thecrystal structure as a solid electrolytes. Therefore, varying mol% of Fe included 1, 2, and 3 were prepared for investigation. The crystalline structure of the pristine and Fe doped samples were characterized by X-ray diffraction (XRD) and the phase contents were evaluated by using the Rietveld method. Rietveld quantitative phase analysis demonstrates that the monoclinic-ZrO2phase increases (12.8 wt% to 39.7 wt%) as the concentration of Fe increases, while the amount of tetragonal-ZrO2phase drop (40.4 wt% to 11.9 wt%) dramatically. Sintering activity was applied to improve incorporation of the 8YSZ powder and the dopant Fe where the relative density increases from 77% to 92%. Sample YSZ-2Fe has been fitted with CPE equivalent circuit and achieved 6.251 x 10-6S/cm at 300 °C in air. However, it was found that conductivity levels decreased as the mol% of Fe increased. In short, sample YSZ-2Fe ceramic demonstrated good results in terms of densification (92.09%), cubic ZrO2phase (22 wt%) and conductivity 6.251 x 10-6S/cm.


1987 ◽  
Vol 2 (2) ◽  
pp. 96-98 ◽  
Author(s):  
Jacques Renault

AbstractXRF and XRD measurements made on a single pressed powder briquet can be combined to give more quantitative information than either technique employed alone. Speed of analysis and simplification of sample preparation are also enhanced. The algorithm presented here uses multiple linear regression of the concentrations of one or more elements on the corrected X-ray diffraction intensities of the phases containing them. The data reduction program runs on a microcomputer. Data are presented to show its application to mineralogical analysis of artificial mixtures of quartz, microcline (a feldspar) and calcite.


1991 ◽  
Vol 6 (12) ◽  
pp. 2723-2734 ◽  
Author(s):  
Gary M. Renlund ◽  
Svante Prochazka ◽  
Robert H. Doremus

Silicon oxycarbide glass is formed by the pyrolysis of silicone resins and contains only silicon, oxygen, and carbon. The glass remains amorphous in x-ray diffraction to 1400 °C and shows no features in transmission electron micrographs (TEM) after heating to this temperature. After heating at higher temperature (1500–1650 °C) silicon carbide lines develop in x-ray diffraction, and fine crystalline regions of silicon carbide and graphite are found in TEM and electron diffraction. XPS shows that silicon-oxygen bonds in the glass are similar to those in amorphous and crystalline silicates; some silicons are bonded to both oxygen and carbon. Carbon is bonded to either silicon or carbon; there are no carbon-oxygen bonds in the glass. Infrared spectra are consistent with these conclusions and show silicon-oxygen and silicon-carbon vibrations, but none from carbon-oxygen bonds. 29Si-NMR shows evidence for four different bonding groups around silicon. The silicon oxycarbide structure deduced from these results is a random network of silicon-oxygen tetrahedra, with some silicons bonded to one or two carbons substituted for oxygen; these carbons are in turn tetrahedrally bonded to other silicon atoms. There are very small regions of carbon-carbon bonds only, which are not bonded in the network. This “free” carbon colors the glass black. When the glass is heated above 1400 °C this network composite rearranges in tiny regions to graphite and silicon carbide crystals. The density, coefficient of thermal expansion, hardness, elastic modulus, index of refraction, and viscosity of the silicon oxycarbide glasses are all somewhat higher than these properties in vitreous silica, probably because the silicon-carbide bonds in the network of the oxycarbide lead to a tighter, more closely packed structure. The oxycarbide glass is highly stable to temperatures up to 1600 °C and higher, because oxygen and water diffuse slowly in it.


2007 ◽  
Vol 22 (4) ◽  
pp. 295-299
Author(s):  
J. X. Deng ◽  
X. R. Xing ◽  
J. Chen ◽  
R. B. Yu ◽  
G. R. Liu ◽  
...  

A series of complex perovskite solid solutions of Ba[(Mg1−xCdx)0.33Nb0.67]O3 have been synthesized by the columbite method. Detailed Rietveld refinement of their X-ray diffraction data show that Ba[(Mg1−xCdx)0.33Nb0.67]O3 has an order trigonal structure. The ordering degree as determined by the B-site occupancies increases with the partial substitution of Cd for Mg. However, a decrease in the ordering degree in the Ba(Cd0.33Nb0.67)O3 sample is observed, which can be attributed to a relatively lower synthesis temperature. All the impurity phases are successfully identified by X-ray quantitative phase analysis. Dielectrics properties at low frequencies for all the Ba[(Mg1−xCdx)0.33Nb0.67]O3 compounds have been measured successfully.


Sign in / Sign up

Export Citation Format

Share Document