scholarly journals Early Crack Propagation in Single Tooth Bending Fatigue: Combination of Finite Element Analysis and Critical-Planes Fatigue Criteria

Metals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1871
Author(s):  
Franco Concli ◽  
Lorenzo Maccioni ◽  
Lorenzo Fraccaroli ◽  
Luca Bonaiti

Mechanical components, such as gears, are usually subjected to variable loads that induce multiaxial non-proportional stress states, which in turn can lead to failure due to fatigue. However, the material properties are usually available in the forms of bending or shear fatigue limits. Multiaxial fatigue criteria can be used to bridge the gap between the available data and the actual loading conditions. However, different criteria could lead to different results. The main goal of this paper is to evaluate the accuracy of different criteria applied to real mechanical components. With respect to this, five different criteria based on the critical plane concept (i.e., Findley, Matake, McDiarmid, Papadopoulos, and Susmel) have been investigated. These criteria were selected because they not only assess the level of damage, but also predict the direction of crack propagation just after nucleation. Therefore, measurements (crack position and direction) on different fractured gear samples tested via Single Tooth Bending Fatigue (STBF) tests on two gear geometries were used as reference. The STBF configuration was numerically simulated via Finite Elements (FE) analyses. The results of FE were elaborated based on the above-mentioned criteria. The numerical results were compared with the experimental ones. The result of the comparison showed that all the fatigue criteria agree in identifying the most critical point. The Findley and Papadopulus criteria proved to be the most accurate in estimating the level of damage. The Susmel criterion turns out to be the most conservative one. With respect to the identification of the direction of early propagation of the crack, the Findley criterion revealed the most appropriate.

Author(s):  
Robert F. Handschuh ◽  
Timothy L. Krantz ◽  
Bradley A. Lerch ◽  
Christopher S. Burke

An investigation of the low-cycle bending fatigue of spur gears made from AISI 9310 gear steel was completed. Tests were conducted using the single-tooth bending method to achieve crack initiation and propagation. Tests were conducted on spur gears in a fatigue test machine using a dedicated gear test fixture. Test loads were applied at the highest point of single tooth contact. Gear bending stresses for a given testing load were calculated using a linear-elastic finite element model. Test data were accumulated from 1/4 cycle to several thousand cycles depending on the test stress level. The relationship of stress and cycles for crack initiation was found to be semi-logarithmic. The relationship of stress and cycles for crack propagation was found to be linear. For the range of loads investigated, the crack propagation phase is related to the level of load being applied. Very high loads have comparable crack initiation and propagation times whereas lower loads can have a much smaller number of cycles for crack propagation cycles as compared to crack initiation.


2021 ◽  
Vol 13 (10) ◽  
pp. 168781402110522
Author(s):  
Zhenyu Wang ◽  
Shuo Wei ◽  
Ke Bao ◽  
Yue Liu ◽  
Senye Peng ◽  
...  

The ball hinge is a key component of the vehicle chassis that connects the steering knuckle and the control arm. The study analyzed the multiple failure behaviors of the chassis ball hinge. Firstly, according to the macroscopic failure characteristics of the ball hinge, the fault tree analysis method was adopted to identify the possible cause of the failure. Then, the axial load and radial load on the ball joint were obtained by simulating the force of the vehicle under the typical extreme conditions. The stress distribution of the ball pin was obtained by finite element analysis of the ball joint. The calculation results are consistent with the fatigue crack position of the ball hinge. Finally, the macro morphology and microstructure of the ball joint seat, ball bowl, dust cover and other parts matched with the ball hinge were analyzed to further verify the failure mode of the ball hinge. The results showed that the dust cover of the ball hinge was firstly aged and cracked, and the external dust and particles enter into the friction contact area of the ball hinge, which caused the ball pin and ball bowl to be stuck. During the operating of the vehicle, the ball pin undergoes unidirectional bending fatigue fracture in the stress concentration area at the root of the conical surface.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 863
Author(s):  
Franco Concli ◽  
Lorenzo Fraccaroli ◽  
Lorenzo Maccioni

Developing accurate design data to enable the effective use of new materials is undoubtedly an essential goal in the gear industry. To speed up this process, Single Tooth Bending Fatigue (STBF) tests can be conducted. However, STBF tests tend to overestimate the material properties with respect to tests conducted on Running Gears (RG). Therefore, it is common practice to use a constant correction factor fkorr, of value 0.9 to exploit STBF results to design actual gears, e.g., through ISO 6336. In this paper, the assumption that this coefficient can be considered independent from the gear material, geometry, and loading condition was questioned, and through the combination of numerical simulations with a multiaxial fatigue criterion, a method for the calculation of fkorr was proposed. The implementation of this method using different gear geometries and material properties shows that fkorr varies with the gears geometrical characteristics, the material fatigue strength, and the load ratio (R) set in STBF tests. In particular, by applying the Findley criterion, it was found that, for the same gear geometry, fkorr depends on the material as well. Specifically, fkorr increases with the ratio between the bending and torsional fatigue limits. Moreover, through this method it was shown that the characteristics related to the material and the geometry have a relevant effect in determining the critical point (at the tooth root) where the fracture nucleates.


2019 ◽  
Vol 300 ◽  
pp. 16003
Author(s):  
Denis Benasciutti ◽  
Julian Marcell Enzveiler Marques

A more efficient procedure is proposed to speed up the Carpinteri-Spagnoli (CS) algorithm in numerical computations. The goal is accomplished by deriving the exact solution for the spectral moments and expected maximum peak of normal/shear stress in any rotated plane orientation. The algorithm then avoid the use of “for/end” loops to identify the five rotations that locate the critical plane in CS method. The procedure is especially advantageous if applied to three-dimensional finite element analysis, in which the stress spectra in thousands of nodes need to be processed iteratively. The procedure is based on theoretical results that have, however, a more general validity, being applicable to any multiaxial criterion that makes use of angular rotations to identify the critical plane.


2002 ◽  
Vol 124 (2) ◽  
pp. 229-237 ◽  
Author(s):  
Alan R. Kallmeyer ◽  
Ahmo Krgo ◽  
Peter Kurath

Many critical engineering components are routinely subjected to cyclic multiaxial stress states, which may include non-proportional loading and multidimensional mean stresses. Existing multiaxial fatigue models are examined to determine their suitability at estimating fatigue damage in Ti-6Al-4V under complex, multiaxial loading, with an emphasis on long-life conditions. Both proportional and non-proportional strain-controlled tension/torsion experiments were conducted on solid specimens. Several multiaxial fatigue damage parameters are evaluated based on their ability to correlate the biaxial fatigue data and uniaxial fatigue data with tensile mean stresses (R>−1) to a fully-reversed (R=−1) uniaxial baseline. Both equivalent stress-based models and critical plane approaches are evaluated. Only one equivalent stress model and two critical plane models showed promise for the range of loadings and material considered.


Author(s):  
Dan Ling ◽  
Hong-Zhong Huang ◽  
Song Wang ◽  
Chuan-hao Wu ◽  
Shun-peng Zhu ◽  
...  

The fatigue life of mechanical element is a random variable in nature following some kind of statistical distribution. In this paper, a method for reliability life prediction considering life randomness is proposed. Firstly, the Smith-Watson-Topper (SWT) model is used to describe the relationship of the maximum normal stress and strain range on the critical plane. Secondly, the maximum normal stress and strain range on the critical plane are calculated by finite element analysis. Thirdly, fatigue life samples are generated using Monte Carlo simulation method, and the mixed Weibull distribution is used to model the distribution of fatigue life of turbine discs. Finally, the proposed method is validated by comparing the prediction results from the proposed method, the observed cumulative failure probability based on median rank, and the standard two-parameter Weibull distribution.


Author(s):  
Mauro Filippini ◽  
Carlo Gorla

A testing device for performing single tooth bending fatigue tests on bevel and face gears is presented. Basically, it works as a normal gearbox in which the pinion acts as loading element while the gear wheel is kept fixed to the frame. The entire rig is installed in a servo-hydraulic torsion fatigue testing machine, so that torque amplitudes up 2200 Nm may be applied with convenient loading frequencies. Torque amplitude is measured by connecting the testing rig to the load cell of the testing machine. It’s possible to rotate the gearwheel at fixed positions so that a large number of teeth of the same wheel may be tested. If the tests are performed on teeth weakened by pre cracking, no special pinion is requested. The proposed testing rig may be employed for testing both bevel and face gears, by simply adapting the parts that keep the gearwheel fixed with the frame and by choosing the proper meshing pinion.


2008 ◽  
Vol 131 (2) ◽  
Author(s):  
Zengliang Gao ◽  
Tianwen Zhao ◽  
Xiaogui Wang ◽  
Yanyao Jiang

Uniaxial, torsion, and axial-torsion fatigue experiments were conducted on a pressure vessel steel, 16MnR, in ambient air. The uniaxial experiments were conducted using solid cylindrical specimens. Axial-torsion experiments employed thin-walled tubular specimens subjected to proportional and nonproportional loading. The true fracture stress and strain were obtained by testing solid shafts under monotonic torsion. Experimental results reveal that the material under investigation does not display significant nonproportional hardening. The material was found to display shear cracking under pure shear loading but tensile cracking under tension-compression loading. Two critical plane multiaxial fatigue criteria, namely, the Fatemi–Socie criterion and the Jiang criterion, were evaluated based on the experimental results. The Fatemi–Socie criterion combines the maximum shear strain amplitude with a consideration of the normal stress on the critical plane. The Jiang criterion makes use of the plastic strain energy on a material plane as the major contributor to the fatigue damage. Both criteria were found to correlate well with the experiments in terms of fatigue life. The predicted cracking directions by the criteria were less satisfactory when comparing with the experimentally observed cracking behavior under different loading conditions.


2021 ◽  
Vol 11 (7) ◽  
pp. 3019
Author(s):  
Franco Concli ◽  
Luca Bonaiti ◽  
Riccardo Gerosa ◽  
Luca Cortese ◽  
Filippo Nalli ◽  
...  

The introduction of Additive Manufacturing (AM) is changing the way in which components and machines can be designed and manufactured. Within this context, designers are taking advantage of the possibilities of producing parts via the addition of material, defining strategies, and exploring alternative design or optimization solutions (i.e., nonviable using subtractive technologies) of critical parts (e.g., gears and shafts). However, a safe and effective design requires specific resistance data that, due to the intrinsic modernity of additive technologies, are not always present in the literature. This paper presents the results of an experimental campaign performed on gear-samples made by 17-4 PH and produced via Laser Powder Bed Fusion (PBF-LB/M). The tests were executed using the Single Tooth Bending Fatigue (STBF) approach on a mechanical pulsator. The fatigue limit was determined using two different statistical approaches according to Dixon and Little. The obtained data were compared to those reported in the ISO standard for steels of similar performance. Additional analyses, i.e., Scanning Electron Microscopy SEM, were carried out to provide a further insight of the behavior 17-4PH AM material and in order to investigate the presence of possible defects in the tested gears, responsible for the final failure.


Sign in / Sign up

Export Citation Format

Share Document