scholarly journals Microstructure and Properties of the 308LSi Austenitic Steel Produced by Plasma-MIG Deposition Welding with Layer-by-Layer Peening

Metals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 82
Author(s):  
Tatyana Olshanskaya ◽  
Dmitry Trushnikov ◽  
Alyona Dushina ◽  
Artur Ganeev ◽  
Alexander Polyakov ◽  
...  

This paper investigates the effect of cold working via layer-by-layer peening on the microstructure and properties of a 308LSi steel workpiece produced by the wire deposition welding with a consumable electrode following the principle of 3D printing. The microstructure, phase composition and mechanical properties of the metal are studied before and after the workpiece synthesis. In the microstructure of the workpieces produced by peening, there is, in addition to austenite, a small quantity of fine-dispersed carbides and residual δ-ferrite in the interdendritic spaces. It is demonstrated that the use of layer-by-layer cold working in the process of deposition welding enables eliminating transcrystallization of the deposited metal, promotes an increase in the microstructure’s degree of dispersion and a more uniform distribution of fine-dispersed carbides in the volume of the dendrites. It is found that these structural features of the deposited metal in the additive manufacturing of a workpiece with layer-by-layer peening lead to an enhancement of the strength characteristics as compared to the material produced by the conventional wire deposition welding. Meanwhile, the level of the ductility characteristics remains high.

Author(s):  
Yashwant Koli ◽  
N Yuvaraj ◽  
Aravindan Sivanandam ◽  
Vipin

Nowadays, rapid prototyping is an emerging trend that is followed by industries and auto sector on a large scale which produces intricate geometrical shapes for industrial applications. The wire arc additive manufacturing (WAAM) technique produces large scale industrial products which having intricate geometrical shapes, which is fabricated by layer by layer metal deposition. In this paper, the CMT technique is used to fabricate single-walled WAAM samples. CMT has a high deposition rate, lower thermal heat input and high cladding efficiency characteristics. Humping is a common defect encountered in the WAAM method which not only deteriorates the bead geometry/weld aesthetics but also limits the positional capability in the process. Humping defect also plays a vital role in the reduction of hardness and tensile strength of the fabricated WAAM sample. The humping defect can be controlled by using low heat input parameters which ultimately improves the mechanical properties of WAAM samples. Two types of path planning directions namely uni-directional and bi-directional are adopted in this paper. Results show that the optimum WAAM sample can be achieved by adopting a bi-directional strategy and operating with lower heat input process parameters. This avoids both material wastage and humping defect of the fabricated samples.


2015 ◽  
Vol 651-653 ◽  
pp. 677-682 ◽  
Author(s):  
Anatoliy Popovich ◽  
Vadim Sufiiarov ◽  
Evgenii Borisov ◽  
Igor Polozov

The article presents results of a study of phase composition and microstructure of initial material and samples obtained by selective laser melting of titanium-based alloy, as well as samples after heat treatment. The effect of heat treatment on microstructure and mechanical properties of specimens was shown. It was studied mechanical behavior of manufactured specimens before and after heat treatment at room and elevated temperatures as well. The heat treatment allows obtaining sufficient mechanical properties of material at room and elevated temperatures such as increase in ductility of material. The fractography of samples showed that they feature ductile fracture with brittle elements.


2019 ◽  
Vol 944 ◽  
pp. 64-72
Author(s):  
Qing Feng Yang ◽  
Cun Juan Xia ◽  
Ya Qi Deng

Bulky sample was made by using TIG wire and arc additive manufacturing (WAAM) technology, in which Ф1.6 mm filler wire of in-situ TiB2/Al-Si composites was selected as deposition metal, following by T6 heat treatment. The microstructure and mechanical properties of the bulky sample before and after heat treatment were analyzed. Experimental results showed that the texture of the original samples parallel to the weld direction and perpendicular to the weld direction was similar consisting of columnar dendrites and equiaxed crystals. After T6 heat treatment, the hardness of the sample was increased to 115.85 HV from 62.83 HV, the yield strength of the sample was 273.33 MPa, the average tensile strength was 347.33 MPa, and the average elongation after fracture was 7.96%. Although pore defects existed in the fracture, yet the fracture of the sample was ductile fracture.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 672 ◽  
Author(s):  
Elena Verdejo de Toro ◽  
Juana Coello Sobrino ◽  
Alberto Martínez Martínez ◽  
Valentín Miguel Eguía ◽  
Jorge Ayllón Pérez

New technologies are offering progressively more effective alternatives to traditional ones. Additive Manufacturing (AM) is gaining importance in fields related to design, manufacturing, engineering and medicine, especially in applications which require complex geometries. Fused Deposition Modelling (FDM) is framed within AM as a technology in which, due to their layer-by-layer deposition, thermoplastic polymers are used for manufacturing parts with a high degree of accuracy and minimum material waste during the process. The traditional technology corresponding to FDM is Polymer Injection Moulding, in which polymeric pellets are injected by pressure into a mould using the required geometry. The increasing use of PA6 in Additive Manufacturing makes it necessary to study the possibility of replacing certain parts manufactured by injection moulding with those created using FDM. In this work, PA6 was selected due to its higher mechanical properties in comparison with PA12. Moreover, its higher melting point has been a limitation for 3D printing technology, and a further study of composites made of PA6 using 3D printing processes is needed. Nevertheless, analysis of the mechanical response of standardised samples and the influence of the manufacturing process on the polyamide’s mechanical properties needs to be carried out. In this work, a comparative study between the two processes was conducted, and conclusions were drawn from an engineering perspective.


2015 ◽  
Vol 229 ◽  
pp. 125-130
Author(s):  
Agnieszka Szkliniarz ◽  
Wojciech Szkliniarz

The paper characterized the phase composition, microstructure and selected mechanical properties at room temperature and at temperature corresponding to the expected operating conditions of a new generation of TiAl based alloys melted in a vacuum induction furnace in a special graphite crucibles.


2015 ◽  
Vol 1120-1121 ◽  
pp. 1269-1275
Author(s):  
Anatoly A. Popovich ◽  
Vadim Sh. Sufiiarov ◽  
Igor A. Polozov ◽  
Evgenii V. Borisov ◽  
Maxim Y. Maximov

The article presents the results of selective laser melting of Ti-6Al-4V alloy. It was studied phase composition and microstructure of the initial powder material, the specimens manufactured by Selective Laser Melting and also the specimens after heat treatment. The effect of heat treatment on microstructure and mechanical properties of the specimens was shown. It was studied the mechanical behavior of the manufactured specimens before and after heat treatment at room and elevated temperatures as well. After heat treatment tests showed that the specimens have decent mechanical properties both at room and elevated temperatures.


Author(s):  
Vivek Kumar P ◽  
◽  
Soundrapandian E ◽  
Jenin Joseph A ◽  
Kanagarajan E ◽  
...  

Additive manufacturing process is a method of layer by layer joining of materials to create components from three-dimensional (3D) model data. After their introduction in the automotive sector a decade ago, it has seen a significant rise in research and growth. The Additive manufacturing is classified into different types based upon the energy source use in the fabrication process. In our project, we used self-build CNC machine that runs MACH3 software, as well as the MACH3 controller is used to control the welding torch motion for material addition through three axis movement (X, Y and Z). In the project we used ER70 S-6 weld wire for the fabrication and examined its microstructure and mechanical properties. Different layers of the specimen had different microstructures, according to microstructural studies of the product. Rockwell hardness tester used for testing hardness of the product. According to the observation of the part fabricated components using the Wire Arc Additive Manufacturing process outperformed the mechanical properties of mild steel casting process. The product fabricated by Wire Arc Additive Manufacturing process properties is superior to conventional casting process.


Author(s):  
Kamardeen Olajide Abdulrahman ◽  
Esther T. Akinlabi ◽  
Rasheedat M. Mahamood

Three-dimensional printing has evolved into an advanced laser additive manufacturing (AM) process with capacity of directly producing parts through CAD model. AM technology parts are fabricated through layer by layer build-up additive process. AM technology cuts down material wastage, reduces buy-to-fly ratio, fabricates complex parts, and repairs damaged old functional components. Titanium aluminide alloys fall under the group of intermetallic compounds known for high temperature applications and display of superior physical and mechanical properties, which made them most sort after in the aeronautic, energy, and automobile industries. Laser metal deposition is an AM process used in the repair and fabrication of solid components but sometimes associated with thermal induced stresses which sometimes led to cracks in deposited parts. This chapter looks at some AM processes with more emphasis on laser metal deposition technique, effect of LMD processing parameters, and preheating of substrate on the physical, microstructural, and mechanical properties of components produced through AM process.


Author(s):  
Haitham Hadidi ◽  
Brady Mailand ◽  
Tayler Sundermann ◽  
Ethan Johnson ◽  
Rakeshkumar Karunakaran ◽  
...  

Abstract The mechanical properties of 3D printed polymers parts are process parameter dependent. Defects such as inadvertent voids between deposited rasters and layers lead to weakness in produced parts, which results in inferior mechanical properties as compared to injection molding. An alternative method to change energy absorption and stiffness of a polymer is hybrid additive manufacturing (AM). Hybrid-AM is the use of additive manufacturing with one or more secondary processes that are fully coupled and synergistically affect part quality, functionality, and/or process performance. In this study, fused filament fabrication (FFF) was coupled with layer-by-layer shot peening to study the dynamic mechanical properties of ABS 430 polymer using dynamic mechanical analysis (DMA). FFF is a heated extrusion process. Shot peening is a mechanical surface treatment that impinges a target with a stochastically dispersed, high velocity stream of beads. Compressive residual stress was imparted to preferential layer intervals during printing to modify the elasticity (stiffness), viscosity, toughness, and glass transition temperature. Viscoelastic and dynamic mechanical properties are important to the performance of polymers in automotive, aerospace, electronics, and medical components. Coupling printing and peening increased the storage and loss moduli as well as the tangent delta. DMA results suggest that preferential layer sequences exist that possess higher elasticity and better absorb energy upon sinusoidal dynamic loading.


2021 ◽  
Author(s):  
Florian Sous ◽  
Tim Herrig ◽  
Thomas Bergs ◽  
Florian Karges ◽  
Nicole Feiling ◽  
...  

Abstract Due to more freedom in design and flexibility in production, parts produced by additive manufacturing technologies (AM) offer a huge potential for the manufacture of turbomachinery components. Because of the layer by layer built structure, internal defects like cracks or gaseous pores can occur. These defects considerably reduce the mechanical properties and increase the importance of quality control, especially in the field of turbomachinery. Therefore, in this study, an electrochemical defect analysis (EC-D) of additive manufactured components is introduced, performed and validated in comparison to a nondestructive X-ray testing of the same part. A test rig was developed, which allows an alternation between electrochemical machining and subsequent optical documentation of each removed layer. The documentation of the surface and the macroscopic defects in the AM-parts are captured by an integrated camera system.


Sign in / Sign up

Export Citation Format

Share Document