scholarly journals Finishing Turning of Ni Superalloy Haynes 282

Metals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 843 ◽  
Author(s):  
José Díaz-Álvarez ◽  
Antonio Díaz-Álvarez ◽  
Henar Miguélez ◽  
José Cantero

Nickel-based superalloys are widely used in the aeronautical industry, especially in components requiring excellent corrosion resistance, enhanced thermal fatigue properties, and thermal stability. Haynes 282 is a nickel-based superalloy that was developed to improve the low weldability, formability, and creep strength of other γ’-strengthened Ni superalloys. Despite the industrial interest in Haynes 282, there is a lack of research that is focused on this alloy. Moreover, it is difficult to find studies dealing with the machinability of Haynes 282. Although Haynes 282 is considered an alloy with improved formability when compared with other nickel alloys, its machining performance should be analyzed. High pressure and temperature localized in the cutting zone, the abrasion generated by the hard carbides included in the material, and the tendency toward adhesion during machining are phenomena that generate extreme thermomechanical loading on the tool during the cutting process. Excessive wear results in reduced tool life, leading to frequent tool change, low productivity, and a high consumption of energy; consequentially, there are increased costs. With regard to tool materials, cemented carbide tools are widely used in different applications, and carbide is a recommended cutting material for turning Haynes 282, for both finishing and roughing operations. This work focuses on the finishing turning of Haynes 282 using coated carbide tools with conventional coolant. Machining forces, surface roughness, tool wear, and tool life were quantified for different cutting speeds and feeds.

2011 ◽  
Vol 496 ◽  
pp. 92-97 ◽  
Author(s):  
You Sheng Li ◽  
J. X. Deng ◽  
Steve Ebbrell ◽  
Michael N. Morgan ◽  
X.J. Ren

This work comparatively studied the performances of straight cemented carbide tools and PVD coated carbide tools in high speed dry turning of Ti-6Al-4V alloy. Systematic machining tests have been performed and the tool life data were analysed using multiple linear regression method to establish extended Taylor tool life models. The wear mechanisms for both tools have been investigated in detail through SEM observation and X-ray energy dispersive microanalysis (EDS).


Author(s):  
Anshuman Das ◽  
Miyaz Kamal ◽  
Sudhansu Ranjan Das ◽  
Saroj Kumar Patel ◽  
Asutosh Panda ◽  
...  

AISI D6 (hardness 65 HRC) is one of the hard-to-cut steel alloys and commonly used in mould and die making industries. In general, CBN and PCBN tools are used for machining hardened steel but its higher cost makes the use for limited applications. However, the usefulness of carbide tool with selective coatings is the best substitute having comparable tool life, and in terms of cost is approximately one-tenth of CBN tool. The present study highlights a detailed analysis on machinability investigation of hardened AISI D6 alloy die steel using newly developed SPPP-AlTiSiN coated carbide tools in finish dry turning operation. In addition, a comparative assessment has been performed based on the effectiveness of cutting tool performance of nanocomposite coating of AlTiN deposited by hyperlox PVD technique and a coating of AlTiSiN deposited by scalable pulsed power plasma (SPPP) technique. The required number of machining trials under varied cutting conditions (speed, depth of cut, feed) were based on L16 orthogonal array design which investigated the crater wear, flank wear, surface roughness, chip morphology, and cutting force in hard turning. Out of the two cutting tools, newly-developed nanocomposite (SPPP-AlTiSiN) coated carbide tool promises an improved surface finish, minimum cutting force, longer tool life due to lower value of crater & flank wears, and considerable improvement in tool life (i.e., by 47.83%). At higher cutting speeds, the crater wear length and flank wear increases whereas the surface roughness, crater wear width and cutting force decreases. Chip morphology confirmed the formation of serrated type saw tooth chips.


2010 ◽  
Vol 33 ◽  
pp. 173-176
Author(s):  
X.Y. Wang ◽  
S.Q. Pang ◽  
Q.X. Yu

The aim of this work is to investigate the machinability of new coated carbide cutting tools that are named C7 plus coatings under turning of superalloy GH2132. This achieved by analysis of tool life at different cutting conditions .Investigations of tool wear and tool life testing are intended to establish T-V formulas, and then analyzed the characteristics of coating . Through a series of comparative tests, Using TiAlN coatings as the contrast materialthe results show that the new coating tools that are named C7 plus coatings are suitable for cutting superalloy GH2132. The cutting speed and processing efficiency can be increased effectively.


2012 ◽  
Vol 497 ◽  
pp. 94-98
Author(s):  
Yang Qiao ◽  
Xiu Li Fu ◽  
Xue Feng Yang

Powder metallurgy (PM) nickel-based superalloy is regarded as one of the most important aerospace industry materials, which has been widely used in advanced turbo-engines. This work presents an orthogonal design experiments to study the cutting force and cutting temperature variations in the face milling of PM nickel-based superalloy with PVD coated carbide tools. Experimental results show that with the increase of feed rate and depth of cut, there is a growing tendency in cutting force, with the increase of cutting speed, cutting force decreases. Among the cutting parameters, feed rate has the greatest influence on cutting force, especially when cutting speed exceeds 60m/min. With the increase of all the cutting parameters, cutting temperature increases. However the cutting temperature increases slightly as the increasing of feed rate. Tool failure mechanisms in face milling of PM nickel-based superalloy are analyzed. It is shown that the breakage and spalling on the cutting edge are the most dominate failure mechanisms, which dominates the deterioration and final failure of the coated carbide tools.


Metals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 989 ◽  
Author(s):  
Antonio Díaz-Álvarez ◽  
José Díaz-Álvarez ◽  
José Luis Cantero ◽  
Henar Miguélez

Nickel-based superalloys exhibit an exceptional combination of corrosion resistance, enhanced mechanical properties at high temperatures, and thermal stability. The mechanical behavior of nickel-based superalloys depends on the grain size and the precipitation state after aging. Haynes 282 was developed in order to improve the creep behavior, formability, and strain-age cracking of the other commonly used nickel-based superalloys. Nevertheless, taking into account the interest of the industry in the machinability of Haynes 282 because of its great mechanical properties, which is not found in other superalloys like Inconel 718 or Waspaloy, more research on this alloy is necessary. Cutting tools suffer extreme thermomechanical loading because of the high pressure and temperature localized in the cutting zone. The consequence is material adhesion during machining and strong abrasion due to the hard carbides included in the material. The main recommendations for finishing turning in Haynes 282 include the use of carbide tools, low cutting speeds, low depth of pass, and the use of cutting fluids. However, because of the growing interest in sustainable processes and cost reduction, dry machining is considered to be one of the best techniques for material removal. During the machining of Haynes 282, at both the finishing and roughing turning, cemented carbide inserts are most commonly used and are recommended all over the industry. This paper deals with the machining of Haynes 282 by means of coated carbide tools cutting fluids (dry condition). Different cutting speeds and feeds were tested to quantify the cutting forces, quality of surface, wear progression, and end of tool life. Tool life values similar to those obtained with a lubricant under similar conditions in other studies have been obtained for the most favorable conditions in dry environments.


2009 ◽  
Vol 626-627 ◽  
pp. 189-194
Author(s):  
P. Liu ◽  
Jiu Hua Xu ◽  
Yu Can Fu

TA15 (Ti-6.5Al-2Zr-1Mo-1V) is a close alpha titanium alloy strengthened by solid solution with Al and other component. A series of experiments were carried out on normal and high speed milling of TA15. The recommended tools for many years had been the uncoated tungsten carbide grade K. In this work, the tool life of coated carbide tools used in high speed milling of forging and cast titanium alloy was studied. Additionally, the wear mechanism of cutting tools was also discussed. Finally, surface integrity, including surface roughness, metallograph and work hardening, were examined and analyzed. The result shows that the surface quality of forging and cast machined by carbide cutter is similar, but the tool life of carbide in high speed milling of forging TA15 is longer than that in high speed milling of cast TA15.


2011 ◽  
Vol 188 ◽  
pp. 469-474
Author(s):  
Han Lian Liu ◽  
Xiang Lv ◽  
Chuan Zhen Huang ◽  
Zeng Bin Yin ◽  
Bin Zou ◽  
...  

In order to improve the machining efficiency of high strength steel 2.25Cr1Mo0.25V and tool life, intermittent turning performance of 2.25Cr1Mo0.25V with common carbide tools and advanced coated carbide tools was experimentally studied, cutting parameters and tool types were optimized. The results showed that the machining efficiency and tool life of advanced coated carbide tools were remarkably higher than that of common carbide tool; the tool life of quadrate coated tool was longer than that of circular tool. The cutting tool failure mechanisms were also discussed.


2018 ◽  
Vol 237 ◽  
pp. 01003 ◽  
Author(s):  
Martyna Wiciak ◽  
Tadeusz Chwalczuk ◽  
Agata Felusiak

In this paper, the influence of laser assisted turning of hard-to-cut nickel-based superalloy on tool cutting ability was presented. The conducted research involved the machining performance along with tool life of ceramic inserts during turning of heat-resistant alloy under a trade name Waspaloy. The ceramic insert with geometry in accordance with the ISO – RPGX 120700 T01020 were applied during longitudinal turning with laser beam. The investigations has been completed with various cutting conditions such as laser power P, cutting speed vc, feed f and depth of cut ap. In order to determine the relations between the tool wear and cutting time, the tool life T has been selected. The increment of tool wear was correlated with the change of vibration signals and the critic points of tool wear was presented. In addition, the shape and form of chip was evaluated based on macroscopic observation and SEM analyses. The conducted research was primarily focused on effective application of ceramic inserts during turning Waspaloy with laser beam and comparison this technology with conventional machining.


2014 ◽  
Vol 800-801 ◽  
pp. 526-530 ◽  
Author(s):  
Shu Cai Yang ◽  
Yu Hua Zhang ◽  
Quan Wan ◽  
Jian Jun Chen ◽  
Chuang Feng

The milling experiments were carried out using TiAlN and PCD coated carbide tools in high speed milling Ti6Al4V to compare and analyze tool wear and tool life of the two kinds of coating carbide tools. In addition, the effect of cooling and lubricating on tool wear is also studied. The results showed that fluid environment is not suitable for milling Ti6Al4V. PCD coating carbide tool can effectively increase the life of tool in high speed milling of Ti6Al4V.


Sign in / Sign up

Export Citation Format

Share Document