scholarly journals Effects of Zr, Y on the Microstructure and Properties of As-Cast Cu-0.5Y-xZr (wt.%) Alloys

Metals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1084
Author(s):  
Dong Liang ◽  
Ning Wang ◽  
Yuxiang Wang ◽  
Zhenjie Liu ◽  
Ying Fu

In this paper, the microstructure and properties of as-cast Cu-Y-Zr alloys with different Zr content were studied in order to investigate whether the precipitates in copper alloys would interact with each other by adding Y and Zr simultaneously. As-cast Cu-0.5Y-xZr (wt.%, x = 0.05 and 0.1, nominal composition) alloys were prepared by vacuum melting in this study. Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and transmission electron microscopy (TEM) were used to observe the microstructure of the alloys. The mechanical properties of the alloys were tested by universal material testing machine at room temperature. The effects of Zr content on the microstructure and mechanical properties of the alloys were explored. As shown by the research results, in the as-cast Cu-0.5Y-xZr (wt.%) alloys, the precipitated phase was the Cu5Y/Cu5Zr phase and ranged from 10 nm to 70 nm in size; when the Zr content increased from 0.05 wt.% to 0.1 wt.%, both the tensile strength and elongation rate of the alloys increased; when the Zr content was 0.1 wt.%, the tensile strength was 225 MPa and the elongation rate was 22.5%.

2011 ◽  
Vol 365 ◽  
pp. 98-103
Author(s):  
De Quan Shi ◽  
Gui Li Gao ◽  
Zhi Wei Gao ◽  
Yan Liu Wang ◽  
Xu Dong Wang

The influence of Al-10RE addition, holding time and holding temperature on the microstructures and mechanical properties of ZL203 aluminum alloy has been studied respectively through using the optical microscope and the universal mechanical testing machine. The experimental results lead to the following conclusions. When Al-10RE addition is 1.0%-1.5%, the holding time is 15 minutes and the holding temperature is 730°C-750°C, the microstructure of Zl203 is perfect. With the increase of Al-10RE addition, the mechanical properties including tensile strength, elongation rate and hardness gradually increase. When the Al-10RE addition is 1.0%-1.5%, the mechanical properties reaches maximum. When the Al-10RE addition is above 1.5%, the mechanical properties decrease with the increase of Al-10RE addition.


2009 ◽  
Vol 610-613 ◽  
pp. 1327-1330
Author(s):  
Yu Ling Hu ◽  
Xue Bao Yu ◽  
Wei Dong Miao ◽  
Gang Liu

A new correction instrument of pectus excavatum is introduced which is designed for a minimally invasive technique (Nuss procedure). The instrument was made of pure titanium plates, and finished by machining, surface treatment and so on. The instrument was made up of correcting bar and fixing bar. The mechanical properties of the instrument was measured with electron universal material testing machine, the safety and validity was verified by clinical doctors after being implanted into the patient. Results showed that the mechanical properties of the instrument keep constantly after implantation for two years. It is lighter than the like product, and can lighten the patent’s and the doctor’s operation bearing. It had been applied in national hospitals, and results showed that it was of better biocompatibility, and few complications were found. Clinical treatment effects were satisfactory.


Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 826
Author(s):  
Wenfeng Hu ◽  
Hongmei Zhu ◽  
Jipeng Hu ◽  
Baichun Li ◽  
Changjun Qiu

Martensitic stainless steel (MSS) coatings with different vanadium (V) contents (0–1.0 wt%) by microalloying have been successfully fabricated utilizing a unique laser cladding technique. The microstructure and properties of the resulting MSS coatings, with and without element V addition, have been carefully investigated by various advanced techniques, including XRD, SEM, TEM, microhardness tester, universal material testing machine, and electrochemical workstation. It was found that the V-free coating was mainly composed of martensite (M) and ferrite (F), trace M23C6 and M2N, while the V-bearing coatings consisted of M, F, M23C6, and VN nano-precipitates, and their number density increased with the increase of V content. The V microalloying can produce a significant impact on the mechanical properties of the resulting MSS laser-cladded specimens. As the V content increased, the elongation of the specimen increased, while the tensile strength and microhardness increased firstly and then decreased. Specifically, the striking comprehensive performance can be optimized by microalloying 0.5 wt% V in the MSS coating, with microhardness, tensile strength, yield strength, and elongation of 500.1 HV, 1756 MPa, 1375 MPa, and 11.9%, respectively. However, the corrosion resistance of the specimens decreased successively with increasing V content. The microstructure mechanisms accounting for the property changes have been discussed in detail.


2013 ◽  
Vol 773 ◽  
pp. 514-519
Author(s):  
Hong He ◽  
Zhu Long ◽  
Lei Dai ◽  
Yong Lv

By using Isopropyl tri (dioctylpyrophosphate) titanate modified nanoSi02. Poly (ε-caprolactone)(PCL) and Poly (Butylene Succinate Adipate)(PBSA) blends was prepared by melt mixing. Its structure and mechanical properties were studied respectively with infrared spectrometer (FT-IR), universal material testing machine and scanning electron microscope (SEM),and analysis the degradation behavior by soil buried experiment The results showed that the modified nanoSi02 content is 4%, the mechanical properties of composite degradation material is improved obviously. The SEM results showed that a low amount of modified nanoSi02 can be dispersed evenly in the blends, while agglomeration of was observed in blends with increasing modified nanoSi02 content. Compared with SEM image after degradation, the degradation behavior of the composites was good.


2018 ◽  
Vol 929 ◽  
pp. 186-190 ◽  
Author(s):  
M.N. Chai ◽  
M.M. Chai ◽  
M.I.N. Isa

In this paper, the mechanical properties of carboxymethyl cellulose-oleic acid (CMC-OA) solid bio-polymer electrolyte (SBE) were examined. The host, CMC was doped with different weight percentage (wt. %) of OA in the CMC-OA solution. The SBEs were tested by using the Universal Material Testing Machine where the readings of tensile strength and Young’s modulus can be obtained from the stress-strain curve produced by the software during the tension test. The sample of CMC doped with 20% wt. of OA was found to obtain the highest value of tensile strength and Young’s modulus which is 0.2069 MPa and 4.615 MPa respectively.


2014 ◽  
Vol 638-640 ◽  
pp. 1536-1540 ◽  
Author(s):  
Hu Zhu Zhang ◽  
Yuan Fang

In order to evaluate the flexural-tensile property of cement stabilized coal gangue roadbase materials, flexural-tensile strength and flexural-tensile modulus of materials, whose cement dosage range from 4% to 7%, were tested on the automatic servo universal material testing machine with one-third loading method. Based on the test data, correlation equations between cement dosage and flexural-tensile strength and flexural-tensile modulus were established. Results show that: cement dosage is an important influence factor of flexural-tensile property, both flexural-tensile strength and flexural-tensile modulus increase linearly with the increase of the cement dosage. Cement stabilized coal gangue roadbase materials have a good flexural-tensile property and suitable for base in the pavement structure.


2005 ◽  
Vol 488-489 ◽  
pp. 869-872 ◽  
Author(s):  
Yu Fan ◽  
Guo Hua Wu ◽  
Hong Tao Gao ◽  
Chun Quan Zhai

The effects of RE and Ca on the mechanical properties and corrosion behavior of AZ91 have been studied by Zwick electronic universal material testing machine, X-ray diffraction, corrosion test and polarization experiment. The results showed that the addition of RE and Ca could improve the mechanical properties and corrosion resistance of AZ91 alloys. The ultimate tensile strength of AZ91 with addition of 1%RE and 1%Ca increased by 15.9%. The addition of 1%RE in AZ91 made the corrosion rate decrease from 0.453mg·cm-2·d-1 to 0.178mg·cm-2·d-1. Furthermore, with adding 1%Ca in AZ91+1%RE, the corrosion rate of AZ91 decreased to 0.086mg·cm-2·d-1 due to the formation of reticular Al2Ca phases, which acts as an effective barrier against corrosion.


2013 ◽  
Vol 457-458 ◽  
pp. 227-230
Author(s):  
Gui Hua Chen ◽  
Dan Dan Wang

The rice-straw particle /HDPE composites were made by compression molding process. Effects of the content of the rice-straw particle, the dosage of the titanate coupling agent and the time of hot-press were analyzed. Mechanical properties of the composites were tested, such as MOR, MOE by universal material testing machine. The result showed that rice-straw particle /HDPE composites have relatively good mechanical properties. The effect of the content of the rice-straw particle on the MOR and MOE of rice-straw particle /HDPE composites are very significant.The mechanical properties of the composite material improved by adding titanate coupling agent. The optimized processing conditions are that the content of the rice-straw particle is 50%,the dosage of the titanate coupling agent is 3%,the time of hot-press is 4 min.


2011 ◽  
Vol 418-420 ◽  
pp. 173-178
Author(s):  
Jing Min Yang ◽  
Yang Wei Wang ◽  
Ju Bin Gao ◽  
Pan Xiong

In order to discuss the effect of content of primary α on properties of bimodal microstructure, the TC4 sheet in rolling state was heat treated at different temperatures of 10~50°Cbelow the β-transus temperature, then a series of bimodal microstructures with different content of primary α were obtained by air-cooled procedure. Quasi-static and dynamic compress tests were carried out with universal material testing machine and Split Hopkinson Pressure Bar (SHPB) respectively. The results indicated that the relationship between mechanical properties and primary α is irregular, and that bimodal microstructure with 25% primary α shows a better combination of strength and ductility.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1723
Author(s):  
Kunlin Wu ◽  
Ding Zhang ◽  
Minghua Liu ◽  
Qi Lin ◽  
Bing-Chiuan Shiu

Raw lacquer (RL), ethanol being used as the solvent, was added to polyvinyl pyrrolidone (PVP) and then electrospun into RL/PVP nanofilms. Manufacturing parameters such as RL/PVP ratio, voltage, flow velocity, needle type, and the distance between syringe and the collection board were systematically investigated. A scanning electronic microscope (SEM) was used to observe the surface morphology of nanofilms; the block drop method was used to measure the water contact angle; the mechanical properties of RL/PVP nanofilms of different proportions were tested by universal material testing machine; and Fourier-transform infrared spectroscopy (FT-IR) was used to characterize the structure. Based on the water resistance and acid resistance measurements, the proposed nanofilms demonstrated to be water and acid resistant were successfully produced. The results show that PVP that melts in water becomes incompatible with water after adding raw lacquer, and the acid resistance is greatly improved. Furthermore, the smaller the fiber diameter, the better the mechanical properties of the nanofilms are under low ratio of RL/PVP. With a high proportion of RL/PVP, the inner structure of the nanofilm is denser, and the water resistance and acid resistance are better. The dense structure can protect the inner material of the nanofilms.


Sign in / Sign up

Export Citation Format

Share Document