scholarly journals A Study on the Improvement of Using Raw Lacquer and Electrospinning on Properties of PVP Nanofilms

Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1723
Author(s):  
Kunlin Wu ◽  
Ding Zhang ◽  
Minghua Liu ◽  
Qi Lin ◽  
Bing-Chiuan Shiu

Raw lacquer (RL), ethanol being used as the solvent, was added to polyvinyl pyrrolidone (PVP) and then electrospun into RL/PVP nanofilms. Manufacturing parameters such as RL/PVP ratio, voltage, flow velocity, needle type, and the distance between syringe and the collection board were systematically investigated. A scanning electronic microscope (SEM) was used to observe the surface morphology of nanofilms; the block drop method was used to measure the water contact angle; the mechanical properties of RL/PVP nanofilms of different proportions were tested by universal material testing machine; and Fourier-transform infrared spectroscopy (FT-IR) was used to characterize the structure. Based on the water resistance and acid resistance measurements, the proposed nanofilms demonstrated to be water and acid resistant were successfully produced. The results show that PVP that melts in water becomes incompatible with water after adding raw lacquer, and the acid resistance is greatly improved. Furthermore, the smaller the fiber diameter, the better the mechanical properties of the nanofilms are under low ratio of RL/PVP. With a high proportion of RL/PVP, the inner structure of the nanofilm is denser, and the water resistance and acid resistance are better. The dense structure can protect the inner material of the nanofilms.

Metals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1084
Author(s):  
Dong Liang ◽  
Ning Wang ◽  
Yuxiang Wang ◽  
Zhenjie Liu ◽  
Ying Fu

In this paper, the microstructure and properties of as-cast Cu-Y-Zr alloys with different Zr content were studied in order to investigate whether the precipitates in copper alloys would interact with each other by adding Y and Zr simultaneously. As-cast Cu-0.5Y-xZr (wt.%, x = 0.05 and 0.1, nominal composition) alloys were prepared by vacuum melting in this study. Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and transmission electron microscopy (TEM) were used to observe the microstructure of the alloys. The mechanical properties of the alloys were tested by universal material testing machine at room temperature. The effects of Zr content on the microstructure and mechanical properties of the alloys were explored. As shown by the research results, in the as-cast Cu-0.5Y-xZr (wt.%) alloys, the precipitated phase was the Cu5Y/Cu5Zr phase and ranged from 10 nm to 70 nm in size; when the Zr content increased from 0.05 wt.% to 0.1 wt.%, both the tensile strength and elongation rate of the alloys increased; when the Zr content was 0.1 wt.%, the tensile strength was 225 MPa and the elongation rate was 22.5%.


2014 ◽  
Vol 1044-1045 ◽  
pp. 128-132
Author(s):  
Chen Jie Shi ◽  
Xiao Yan Li ◽  
Xia Wang ◽  
Yuan Wen Wang ◽  
Zhen Lu ◽  
...  

To improve the compatibility of montmorillonite (MMT) with polymer. A kind of organic intercalation agent was applied in the intercalating organic modification of montmorillonite (OMMT) through ion exchange method, and a kind of silane coupling agent was further used to do the organic treatment. The SEBS/OMMTs composites were also prepared by melt blending. Structure and characterization of the modified MMTs were investigated by Fourier Transform infrared (FT-IR), wide angle X-ray diffraction (WAXRD), and the thermal stability were characterized by Thermogravimetric analysis (TGA). The dispersion status of MMTs were evaluated by scanning electron microscope (SEM) and the composites were tested by universal material testing machine. The FTIR results initial displayed that OMMTs had the absorption peak of organic functional groups. The XRD results showed that compared to Na+-MMT(1.47 nm), the layer spacing of H-OMMT increased to 3.27 nm, the above two results showed the organic modification of MMT had succeed. The results of TGA showed that OMMTs had a weight loss of organics. The SEM demonstrated that H-OMMT had the best dispersion status in SEBS matrix, and Na+-MMT was the worst.


2009 ◽  
Vol 610-613 ◽  
pp. 1327-1330
Author(s):  
Yu Ling Hu ◽  
Xue Bao Yu ◽  
Wei Dong Miao ◽  
Gang Liu

A new correction instrument of pectus excavatum is introduced which is designed for a minimally invasive technique (Nuss procedure). The instrument was made of pure titanium plates, and finished by machining, surface treatment and so on. The instrument was made up of correcting bar and fixing bar. The mechanical properties of the instrument was measured with electron universal material testing machine, the safety and validity was verified by clinical doctors after being implanted into the patient. Results showed that the mechanical properties of the instrument keep constantly after implantation for two years. It is lighter than the like product, and can lighten the patent’s and the doctor’s operation bearing. It had been applied in national hospitals, and results showed that it was of better biocompatibility, and few complications were found. Clinical treatment effects were satisfactory.


2013 ◽  
Vol 773 ◽  
pp. 514-519
Author(s):  
Hong He ◽  
Zhu Long ◽  
Lei Dai ◽  
Yong Lv

By using Isopropyl tri (dioctylpyrophosphate) titanate modified nanoSi02. Poly (ε-caprolactone)(PCL) and Poly (Butylene Succinate Adipate)(PBSA) blends was prepared by melt mixing. Its structure and mechanical properties were studied respectively with infrared spectrometer (FT-IR), universal material testing machine and scanning electron microscope (SEM),and analysis the degradation behavior by soil buried experiment The results showed that the modified nanoSi02 content is 4%, the mechanical properties of composite degradation material is improved obviously. The SEM results showed that a low amount of modified nanoSi02 can be dispersed evenly in the blends, while agglomeration of was observed in blends with increasing modified nanoSi02 content. Compared with SEM image after degradation, the degradation behavior of the composites was good.


2005 ◽  
Vol 488-489 ◽  
pp. 869-872 ◽  
Author(s):  
Yu Fan ◽  
Guo Hua Wu ◽  
Hong Tao Gao ◽  
Chun Quan Zhai

The effects of RE and Ca on the mechanical properties and corrosion behavior of AZ91 have been studied by Zwick electronic universal material testing machine, X-ray diffraction, corrosion test and polarization experiment. The results showed that the addition of RE and Ca could improve the mechanical properties and corrosion resistance of AZ91 alloys. The ultimate tensile strength of AZ91 with addition of 1%RE and 1%Ca increased by 15.9%. The addition of 1%RE in AZ91 made the corrosion rate decrease from 0.453mg·cm-2·d-1 to 0.178mg·cm-2·d-1. Furthermore, with adding 1%Ca in AZ91+1%RE, the corrosion rate of AZ91 decreased to 0.086mg·cm-2·d-1 due to the formation of reticular Al2Ca phases, which acts as an effective barrier against corrosion.


2013 ◽  
Vol 457-458 ◽  
pp. 227-230
Author(s):  
Gui Hua Chen ◽  
Dan Dan Wang

The rice-straw particle /HDPE composites were made by compression molding process. Effects of the content of the rice-straw particle, the dosage of the titanate coupling agent and the time of hot-press were analyzed. Mechanical properties of the composites were tested, such as MOR, MOE by universal material testing machine. The result showed that rice-straw particle /HDPE composites have relatively good mechanical properties. The effect of the content of the rice-straw particle on the MOR and MOE of rice-straw particle /HDPE composites are very significant.The mechanical properties of the composite material improved by adding titanate coupling agent. The optimized processing conditions are that the content of the rice-straw particle is 50%,the dosage of the titanate coupling agent is 3%,the time of hot-press is 4 min.


2011 ◽  
Vol 418-420 ◽  
pp. 173-178
Author(s):  
Jing Min Yang ◽  
Yang Wei Wang ◽  
Ju Bin Gao ◽  
Pan Xiong

In order to discuss the effect of content of primary α on properties of bimodal microstructure, the TC4 sheet in rolling state was heat treated at different temperatures of 10~50°Cbelow the β-transus temperature, then a series of bimodal microstructures with different content of primary α were obtained by air-cooled procedure. Quasi-static and dynamic compress tests were carried out with universal material testing machine and Split Hopkinson Pressure Bar (SHPB) respectively. The results indicated that the relationship between mechanical properties and primary α is irregular, and that bimodal microstructure with 25% primary α shows a better combination of strength and ductility.


2020 ◽  
Vol 9 (1) ◽  
pp. 209-218 ◽  
Author(s):  
Jie Ding ◽  
Zhiying Qin ◽  
Haitao Luo ◽  
Wei Yang ◽  
Yanbing Wang ◽  
...  

AbstractNano-silica modified phenolic resin film is prepared using different mass fractions of nano-silica by liquid composites molding (LCM). The effects of nano-silica on the rheology and curing of phenolic resin are studied by rheometer and differential scanning calorimeter (DSC). The results show that the viscosity of nano-silica modified phenolic resin decreases with the increase of temperature, and the viscosity is lowest between 70°C and 90°C. The appropriate resin film infusion (RFI) process is investigated, and the stepped curing process system is established. In addition, the microstructures of modified phenolic film and composites are tested by scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS). Nano-silica can be uniformly dispersed in phenolic resin when the amount of nano-silica added is ≤ 4%. And the mechanical properties of nano-silica modified phenolic composites are tested by universal material testing machine. The optimum nano-silica mass loading for the improvement of mechanical properties is found. This work provides an effective way to prepare the modified phenolic resin film suitable for resin film infusion (RFI) processes, and it maybe become a backbone of thermal protection material in aerospace.


2014 ◽  
Vol 665 ◽  
pp. 348-351
Author(s):  
Shu Fang Lv ◽  
Shi Jie Niu ◽  
Ying Bin Liu ◽  
Ming Tao Run

Poly (trimethylene terephthalate)/acrylonitrile-styrene-acrylic copolymer blends were prepared and their morphology, thermal aging and mechanical properties were investigated by using the polarized optical microscopy, universal material testing machine and color-difference meter, repectively. The results suggest that ASA and PTT are partially miscible in the blends, and when TPEE content is 50%, a bi-continuous phases form in the blend. The PTT’s spherulites in the blends become smaller and even microcrystallites with increasing ASA content. ASA component has good effect on toughen PTT by increasing blends’ impact strength but depresses the tensile strength of the blends. ASA has no influence on the thermal aging properties of PTT, and PTT/ASA blend has better thermal aging resistance than that of PTT/ABS blend.


2011 ◽  
Vol 217-218 ◽  
pp. 1170-1173
Author(s):  
Wei Wei Qiao ◽  
Hui Wang ◽  
Yan Hua Zhao ◽  
Yi Xia Han

We investigate the mechanical properties of Poly Vinyl Chloride (PVC)/ acrylnitrile-butadiene-styrene copolymer (ABS) composite material with an impact testing machine,a material testing machine and other accessory devices. The result shows that the mechanical properties of PVC/ABS composite are a function of composition, the addition of ABS improved the mechanical properties of PVC/ ABS composite,the impact strength and elongation at break rise significantly with increasing ABS content in PVC/ABS composite and appears maximum value,While the tensile strength and modulus almost decrease monotonously with increasing ABS content in PVC/ABS composite.


Sign in / Sign up

Export Citation Format

Share Document