scholarly journals Effects of Water Deficit and Heat Stress on Nicotiana langsdorffii Metabolomic Pattern Modified by Insertion of rolD Gene from Agrobacterium rhizogenes

Metabolites ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 310
Author(s):  
Elisa Scalabrin ◽  
Marta Radaelli ◽  
Gabriele Capodaglio

Abiotic stresses are major factors that negatively affect plant growth and productivity. Plants have developed complex strategies to ensure their survival and reproduction under adverse conditions, activating mechanisms that involve changes at different metabolic levels. In order to select stress-resistant species, research has focused on molecular studies and genetic engineering, showing promising results. In this work, the insertion of the rolD gene from Agrobacterium rhizogenes into Nicotiana langsdorffii plants is investigated, in order to assess the potential of this genetic modification towards mitigating water and heat stresses. Different approaches were combined: a high-throughput metabolomics and ionomics study was performed, together with the determination of important plant phytohormones. The aim was to identify the influence of abiotic stresses on plants and to highlight the effects of the rolD genetic modification on plant stress response. The most relevant compounds for each kind of stress were identified, belonging mainly to the classes of lipids, acyl sugars, glycosides, and amino acid derivatives. Water stress (WS) determined a decrease of elements and secondary metabolites, while amino acids and their derivatives increased, proving to be key molecules in this type of stress. RolD plants exposed to high temperature stress (HS) presented higher dry weight levels than controls, as well as increased amounts of K and adenosine and lower levels of damage-associated metabolites, suggesting the increased resistance of rolD-modified plants toward HS.

1995 ◽  
Vol 9 (2) ◽  
pp. 352-355 ◽  
Author(s):  
Sharon A. Clay ◽  
Jim F. Gaffney ◽  
Leon J. Wrage

Trifluralin is used for weed control in wheat but may reduce vegetative growth and yield. Postemergence (POST) herbicides may cause additional plant stress to trifluralin-stressed wheat. Field studies at Groton, SD in 1991 and 1992 and at Highmore, SD in 1992 evaluated the effects of 2,4-D-amine, difenzoquat, metsulfuron, and a combination of fenoxaprop-ethyl + 2,4-D-ester + MCPA-ester on hard red spring wheat cultivars ‘2375,’ ‘Prospect,’ and ‘Butte 86’ seeded in areas treated with preplant incorporated trifluralin either in the spring before seeding (0.56 kg ai/ha) or the previous year (1.12 or 2.24 kg ai/ha). Trifluralin applied alone in the spring, and followed by some POST herbicides, reduced shoot dry weight and grain yield. Trifluralin reduced the yield of Prospect the most and the yield of 2375 the least. Yields of trifluralin-treated wheat were reduced 23% by metsulfuron and 14% by fenoxaprop-ethyl + 2,4-D + MCPA compared to yields of wheat treated with only the respective POST herbicide. Yields were not reduced with any trifluralin-POST herbicide combination when trifluralin was applied a year prior to seeding wheat.


2018 ◽  
Vol 19 (11) ◽  
pp. 3681 ◽  
Author(s):  
Alia Anwar ◽  
Maoyun She ◽  
Ke Wang ◽  
Bisma Riaz ◽  
Xingguo Ye

Plant tolerance to biotic and abiotic stresses is complicated by interactions between different stresses. Maintaining crop yield under abiotic stresses is the most daunting challenge for breeding resilient crop varieties. In response to environmental stresses, plants produce several metabolites, such as proline (Pro), polyamines (PAs), asparagine, serine, carbohydrates including glucose and fructose, and pools of antioxidant reactive oxygen species. Among these metabolites, Pro has long been known to accumulate in cells and to be closely related to drought, salt, and pathogen resistance. Pyrroline-5-carboxylate (P5C) is a common intermediate of Pro synthesis and metabolism that is produced by ornithine aminotransferase (OAT), an enzyme that functions in an alternative Pro metabolic pathway in the mitochondria under stress conditions. OAT is highly conserved and, to date, has been found in all prokaryotic and eukaryotic organisms. In addition, ornithine (Orn) and arginine (Arg) are both precursors of PAs, which confer plant resistance to drought and salt stresses. OAT is localized in the cytosol in prokaryotes and fungi, while OAT is localized in the mitochondria in higher plants. We have comprehensively reviewed the research on Orn, Arg, and Pro metabolism in plants, as all these compounds allow plants to tolerate different kinds of stresses.


2006 ◽  
Vol 46 (8) ◽  
pp. 1101 ◽  
Author(s):  
M. Hornitzky ◽  
A. Ghalayini

Food or ingredients labelled as genetically modified (GM) contain either new genetic material or protein as a result of genetic modification. In Australia, a 1% threshold, below which labelling is not required, exists for the unintended presence of GM material in non-GM foods. The canola pollen content by dry weight in a range of canola honey samples from diverse geographical areas in Australia was determined to be 0.2 ± 0.12%, well below the 1% threshold. Two GM canola honey samples sourced from Canada contained 0.19 and 0.24% of canola pollen. This work indicates honey derived from GM canola crops will not need to be labelled as a GM food.


2000 ◽  
Vol 28 (6) ◽  
pp. 790-791 ◽  
Author(s):  
K. Skorupińska-Tudek ◽  
V. S. Hung ◽  
O. Olszowska ◽  
M. Furmanowa ◽  
T. Chojnacki ◽  
...  

Long-chain polyisoprenoid alcohols built from several up to more than 100 isoprenoid units are common constituents of all living organisms. They were found mostly in plants, bacteria, yeasts and mammalian cells. In vitro hairy root culture of Coluria geoides was obtained from plants transformed with Agrobacterium rhizogenes. Growth was optimal at 0.75% (w/v) glucose and at 22 °C. Dry samples of roots were extracted and lipid content was analysed by HPLC. According to our estimation, polyprenols are accumulated in roots of C. geoides cultivated in vitro as a mixture of several prenologues with the dominating prenol composed of 16 isoprenoid units. The content of polyprenols in tissue was approx. 300 μg/g of dry weight.


2015 ◽  
Vol 407 (21) ◽  
pp. 6357-6368 ◽  
Author(s):  
Elisa Scalabrin ◽  
Marta Radaelli ◽  
Giovanni Rizzato ◽  
Patrizia Bogani ◽  
Marcello Buiatti ◽  
...  

1986 ◽  
Vol 64 (1) ◽  
pp. 27-34 ◽  
Author(s):  
Neil K. Dawe ◽  
Eric R. White

A study of the vegetation of the Nanoose – Bonell salt marsh, Vancouver Island, British Columbia, was conducted during the period of May – September 1978. A total of 49 species of vascular plants was identified, 10 of which dominated the flora of the estuarine marsh. Six of those dominant species (Distichlis spicata, Glaux maritima, Salicornia virginica, Triglochin maritimum, Plantago maritima, and Atriplex patula) are tolerant of high salinities. Eight plant communities were identified and mapped within the study area. Aerial biomass was dominated by that of the Carex – channel edge community with a peak aboveground biomass of 1259 g dry weight/m2. Major factors affecting the occurrence and distribution of species within the marsh were salinity of the inundating water, elevation of the marsh platform, and soil texture.


1982 ◽  
Vol 18 (2) ◽  
pp. 167-175 ◽  
Author(s):  
L. Fanjul ◽  
J. Kohashi-Shibata ◽  
E. Hernandez-Xolocotzi

SUMMARYThe yield potential of a highly productive non-commercial Type IV bean cultivar was determined under optimum field conditions, grown in monoculture at 1 plant/m2 on trellises 3 m high. Canopy growth was analysed by dividing the stand into 25 cm horizontal strata. The main components of yield were number of inflorescences and number of pods per stratum. Daily yield for the growing period was 4.9 g dry weight/m2. Although a high yield per plant was recorded (823 g/plant) drop of young pods and seed abortion were the major factors reducing the potential yield.


2020 ◽  
Author(s):  
Marta-Marina Pérez-Alonso ◽  
Paloma Ortiz-García ◽  
José Moya-Cuevas ◽  
Thomas Lehmann ◽  
Beatriz Sánchez-Parra ◽  
...  

ABSTRACTThe evolutionary success of plants relies to a large extent on their extraordinary ability to adapt to changes in their environment. These adaptations require that plants balance their growth with their stress responses. Plant hormones are crucial mediators orchestrating the underlying adaptive processes. However, whether and how the growth-related hormone auxin and the stress-related hormones jasmonic acid (JA), salicylic acid, and abscisic acid (ABA) are coordinated remains largely elusive. Here, we analyze the physiological role of AMIDASE 1 (AMI1) in plant growth and its possible connection to plant adaptations to abiotic stresses. AMI1 contributes to cellular auxin homeostasis by catalyzing the conversion of indole-acetamide into the major plant auxin indole-3-acetic acid. Functional impairment of AMI1 increases the plants’ stress status rendering mutant plants more susceptible to abiotic stresses. Transcriptomic analysis of ami1 mutants disclosed the reprogramming of a considerable number of stress-related genes, including JA and ABA biosynthesis genes. The ami1 mutants exhibit only moderately repressed growth, but an enhanced ABA accumulation, which suggests a role for AMI1 in the crosstalk between auxin and ABA. Altogether, our results suggest that AMI1 is involved in coordinating the trade-off between plant growth and stress responses, balancing auxin with ABA homeostasis.HIGHLIGHTThe IAM amidohydrolase AMI1 catalyzes the conversion of IAM into IAA in vivo. Expression of AMI1 is specifically repressed by osmotic stress conditions, which triggers ABA biosynthesis through the induction of NCED3, thereby linking auxin homeostasis with plant stress responses.


2021 ◽  
Vol 37 (5) ◽  
pp. 415-427
Author(s):  
Anne J. Anderson ◽  
Young Cheol Kim

A plethora of compounds stimulate protective mechanisms in plants against microbial pathogens and abiotic stresses. Some defense activators are synthetic compounds and trigger responses only in certain protective pathways, such as activation of defenses under regulation by the plant regulator, salicylic acid (SA). This review discusses the potential of naturally occurring plant metabolites as primers for defense responses in the plant. The production of the metabolites, hexanoic acid and melatonin, in plants means they are consumed when plants are eaten as foods. Both metabolites prime stronger and more rapid activation of plant defense upon subsequent stress. Because these metabolites trigger protective measures in the plant they can be considered as “vaccines” to promote plant vigor. Hexanoic acid and melatonin instigate systemic changes in plant metabolism associated with both of the major defense pathways, those regulated by SA- and jasmonic acid (JA). These two pathways are well studied because of their induction by different microbial triggers: necrosis-causing microbial pathogens induce the SA pathway whereas colonization by beneficial microbes stimulates the JA pathway. The plant’s responses to the two metabolites, however, are not identical with a major difference being a characterized growth response with melatonin but not hexanoic acid. As primers for plant defense, hexanoic acid and melatonin have the potential to be successfully integrated into vaccination-like strategies to protect plants against diseases and abiotic stresses that do not involve man-made chemicals.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5909
Author(s):  
Shining Loo ◽  
Stephanie V. Tay ◽  
Antony Kam ◽  
Fan Tang ◽  
Jing-Song Fan ◽  
...  

Chitin-binding hevein-like peptides (CB-HLPs) belong to a family of cysteine-rich peptides that play important roles in plant stress and defense mechanisms. CB-HLPs are ribosomally synthesized peptides that are known to be bioprocessed from the following two types of three-domain CB-HLP precursor architectures: cargo-carrying and non-cargo-carrying. Here, we report the identification and characterization of chenotides biosynthesized from the third type of precursors, which are cleavable hololectins of the quinoa (Chenopodium quinoa) family. Chenotides are 6-Cys-CB-HLPs of 29–31 amino acids, which have a third type of precursor architecture that encompasses a canonical chitin-binding domain that is involved in chitin binding and anti-fungal activities. Microbroth dilution assays and microscopic analyses showed that chenotides are effective against phyto-pathogenic fungi in the micromolar range. Structure determination revealed that chenotides are cystine knotted and highly compact, which could confer resistance against heat and proteolytic degradation. Importantly, chenotides are connected by a novel 18-residue Gly/Ala-rich linker that is a target for bioprocessing by cathepsin-like endopeptidases. Taken together, our findings reveal that chenotides are a new family of CB-HLPs from quinoa that are synthesized as a single multi-modular unit and bioprocessed to yield individual mature CB-HLPs. Importantly, such precursors constitute a new family of cleavable hololectins. This unusual feature could increase the biosynthetic efficiency of anti-fungal CB-HLPs, to provide an evolutionary advantage for plant survival and reproduction.


Sign in / Sign up

Export Citation Format

Share Document