scholarly journals Plasma Bile Acid Profile in Patients with and without Type 2 Diabetes

Metabolites ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 453
Author(s):  
Alessandro Mantovani ◽  
Andrea Dalbeni ◽  
Denise Peserico ◽  
Filippo Cattazzo ◽  
Michele Bevilacqua ◽  
...  

A paucity of information currently exists on plasma bile acid (BA) profiles in patients with and without type 2 diabetes mellitus (T2DM). We assayed 14 plasma BA species in 224 patients with T2DM and in 102 nondiabetic individuals with metabolic syndrome. Plasma BA levels were measured with ultra-performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) technique. Multivariable linear regression analyses were undertaken to assess associations between measured plasma BA species and T2DM status after adjustment for confounding factors. The presence of T2DM was significantly associated with higher plasma concentrations of both primary BAs (adjusted-standardized β coefficient: 0.279, p = 0.005) and secondary BAs (standardized β coefficient: 0.508, p < 0.001) after adjustment for age, sex, adiposity measures, serum alanine aminotransferase and use of statins or metformin. More specifically, the presence of T2DM was significantly associated with higher levels of plasma taurochenodeoxycholic acid, taurodeoxycholic acid, glycochenodeoxycholic acid, hyodeoxycholic acid, glycodeoxycholic acid, glycolithocholic acid, deoxycholic acid, taurochenodeoxycholic acid, taurodeoxycholic acid, glycochenodeoxycholic acid and glycodeoxycholic acid (adjusted-standardized β coefficients ranging from 0.315 to 0.600; p < 0.01 or less), as well as with lower plasma levels of cholic acid (adjusted-standardized β coefficient: −0.250, p = 0.013) and taurocholic acid (adjusted-standardized β coefficient: −0.309, p = 0.001). This study shows that there are marked differences in plasma BA profiles between patients with and without T2DM. Further research will be needed to better understand how these differences in plasma BA profiles may interplay with the pathophysiology of T2DM.

Nutrients ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1767 ◽  
Author(s):  
Yoona Kim ◽  
Jennifer B. Keogh ◽  
Permal Deo ◽  
Peter M. Clifton

Dietary advanced glycation end products (AGEs) are believed to contribute to pathogenesis of diabetes and cardiovascular disease. The objective of this study was to determine if a diet high in red and processed meat and refined grains (HMD) would elevate plasma concentrations of protein-bound AGEs compared with an energy-matched diet high in whole grain, dairy, nuts and legumes (HWD). We conducted a randomized crossover trial with two 4-week weight-stable dietary interventions in 51 participants without type 2 diabetes (15 men and 36 women aged 35.1 ± 15.6 y; body mass index (BMI), 27.7 ± 6.9 kg/m2). Plasma concentrations of protein-bound Nε-(carboxymethyl) lysine (CML), Nε-(1-carboxyethyl) lysine (CEL) and Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine (MG-H1) were measured by liquid chromatography–tandem mass spectrometry (LC-MS/MS). The HMD significantly increased plasma concentrations (nmol/mL) of CEL (1.367, 0.78 vs. 1.096, 0.65; p < 0.01; n = 48) compared with the HWD. No differences in CML and MG-H1 between HMD and HWD were observed. HMD increased plasma CEL concentrations compared with HWD in individuals without type 2 diabetes.


Diabetologia ◽  
2021 ◽  
Vol 64 (3) ◽  
pp. 668-680
Author(s):  
Capucine Bertrand ◽  
◽  
Pierre-Jean Saulnier ◽  
Louis Potier ◽  
Mikaël Croyal ◽  
...  

2019 ◽  
Vol 106 (4) ◽  
pp. 831-840 ◽  
Author(s):  
Sophie Gravel ◽  
Jean‐Louis Chiasson ◽  
Fleur Gaudette ◽  
Jacques Turgeon ◽  
Veronique Michaud

2017 ◽  
Vol 35 (3) ◽  
pp. 185-190 ◽  
Author(s):  
C. Daniel De Magalhaes Filho ◽  
Michael Downes ◽  
Ronald M. Evans

Obesity and its associated diseases, including type 2 diabetes, have reached epidemic levels worldwide. However, available treatment options are limited and ineffective in managing the disease. There is therefore an urgent need for the development of new pharmacological solutions. The bile acid (BA) Farnesoid X receptor (FXR) has recently emerged as an attractive candidate. Initially described for their role in lipid and vitamin absorption from diet, BAs are hormones with powerful effects on whole body lipid and glucose metabolism. In this review, we focus on FXR and how 2 decades of work on this receptor, both in rodents and humans, have led to the development of drug agonists with potential use in humans for treatment of conditions ranging from obesity-associated diseases to BA dysregulation.


2013 ◽  
Vol 97 (4) ◽  
pp. 862-871 ◽  
Author(s):  
Dawn C Schwenke ◽  
John P Foreyt ◽  
Edgar R Miller ◽  
Rebecca S Reeves ◽  
Mara Z Vitolins ◽  
...  

2021 ◽  
Author(s):  
Eric Adua ◽  
Elham Memarian ◽  
Ebenezer Afrifa-Yamoah ◽  
Alyce Russell ◽  
Irena Trbojević-Akmačić ◽  
...  

Aim: The study sought to determine the patterns of N-glycan profiles among Type 2 diabetes mellitus (T2DM) patients over a 6-month period. Materials & methods: Biochemical and clinical data were obtained from 253 T2DM patients at baseline and follow-up. Ultra-performance liquid chromatography and statistical methods were applied for N-glycan profiling. Results: The coefficients of variation were 28% and 29% at baseline and follow-up, respectively, whereas the range of N-glycan variability was from 11% to 56%. Apart from GP1 (FA2) and GP29 (FA3G3S [3,3,3]3), the intra-individual variations of N-glycan peaks were not statistically significant. Conclusion: N-glycan profiles were stable over 6-month period in T2DM patients and could be used to monitor biochemical changes in relation with T2DM comorbidities.


2017 ◽  
Vol 102 (11) ◽  
pp. 4153-4162 ◽  
Author(s):  
Andreas Brønden ◽  
Anders Albér ◽  
Ulrich Rohde ◽  
Jens F Rehfeld ◽  
Jens J Holst ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document