scholarly journals Central and Peripheral Oxygen Distribution in Two Different Modes of Interval Training

Metabolites ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 790
Author(s):  
Korbinian Sebastian Hermann Ksoll ◽  
Alexander Mühlberger ◽  
Fabian Stöcker

In high-intensity interval training the interval duration can be adjusted to optimize training results in oxygen uptake, cardiac output, and local oxygen supply. This study aimed to compare these variables in two interval trainings (long intervals HIIT3m: 3 min work, 3 min active rest vs. short intervals HIIT30s: 30 s work, 30 s active rest) at the same overall work rate and training duration. 24 participants accomplished both protocols, (work: 80% power output at VO2peak, relief: 85% power output at gas exchange threshold) in randomized order. Spirometry, impedance cardiography, and near-infrared spectroscopy were used to analyze the physiological stress of the cardiopulmonary system and muscle tissue. Although times above gas exchange threshold were shorter in HIIT3m (HIIT3m 1669.9 ± 310.9 s vs. HIIT30s 1769.5 ± 189.0 s, p = 0.034), both protocols evoked similar average fractional utilization of VO2peak (HIIT3m 65.23 ± 4.68% VO2peak vs. HIIT30s 64.39 ± 6.78% VO2peak, p = 0.261). However, HIIT3m resulted in higher cardiovascular responses during the loaded phases (VO2p < 0.001, cardiac output p < 0.001). Local hemodynamics were not different between both protocols. Average physiological responses were not different in both protocols owning to incomplete rests in HIIT30s and large response amplitudes in HIIT3m. Despite lower acute cardiovascular stress in HIIT30s, short submaximal intervals may also trigger microvascular and metabolic adaptions similar to HIIT3m. Therefore, the adaption of interval duration is an important tool to adjust the goals of interval training to the needs of the athlete or patient.

Author(s):  
Christopher J. Alfiero ◽  
Samantha J. Brooks ◽  
Hannah M. Bideganeta ◽  
Coby Contreras ◽  
Ann F. Brown

The effects of a 6-week cycling high-intensity interval training (HIIT) concurrently with protein supplementation on aerobic and anaerobic fitness and body composition in collegiate dancers was investigated. Eighteen participants enrolled in a collegiate dance program were matched into three groups: high-protein (HP; 90 g·d-1), moderate-protein (MP; 40 g·d-1), and control (C; 0 g·d-1). All participants performed a 6-week HIIT intervention. Participants completed a graded exercise test, Wingate anaerobic test (Wingate), and dual energy x-ray absorptiometry scan before and after the intervention. Peak heart rate (HRpeak), peak oxygen uptake (VOpeak), peak power output (PPO), lactate threshold (LT), and ventilatory thresholds 1 (VT1) and 2 (VT2) were assessed during the graded exercise test. Peak power output, mean power output (MPO), and fatigue index (FI) were assessed during the Wingate. Lean mass (LM), fat mass (FM), visceral adipose tissue, appendicular skeletal muscle mass, and appendicular skeletal muscle mass index were assessed during dual energy x-ray absorptiometry. Body composition index (BCI) was calculated from pre and post LM and FM. Habitual diet was recorded weekly. Significance was set at p ≤ 0.05. No significant differences in VO2peak and percent fat mass (%FM) were observed between groups prior to the intervention. Significant main effects for time were observed for HRpeak (p = 0.02), VO2peak (p < 0.001), PPO (p < 0.01), LT (p < 0.001), VT1 (p < 0.001), and VT2 (p < 0.001) during the graded exercise test, and PPO (p < 0.01) and FI (p < 0.01) during the Wingate. Significant main effects for time were observed for LM (kg; p = 0.01) and FM (kg; p < 0.01). Body composition index was improved for all groups, however, no significant differences by group were observed. No significant differences were observed between groups for the measured outcomes (p > 0.05). Therefore, there was no effect of protein supplementation in the short 6-week intervention. This cycling based HIIT routine increased physical fitness, optimized aesthetics, and was a simple addition to an existing collegiate dance curriculum.


2011 ◽  
Vol 43 (Suppl 1) ◽  
pp. 905-906
Author(s):  
Michael J. Ormsbee ◽  
Amber W. Kinsey ◽  
Minwook Chong ◽  
Heather S. Friedman ◽  
Tonya Dodge ◽  
...  

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9791
Author(s):  
Gabriel V. Protzen ◽  
Charles Bartel ◽  
Victor S. Coswig ◽  
Paulo Gentil ◽  
Fabricio B. Del Vecchio

Background One of the most popular high-intensity interval exercises is the called “Tabata Protocol”. However, most investigations have limitations in describing the work intensity, and this fact appears to be due to the protocol unfeasibility. Furthermore, the physiological demands and energetic contribution during this kind of exercise remain unclear. Methods Eight physically active students (21.8 ± 3.7 years) and eight well-trained cycling athletes (27.8 ± 6.4 years) were enrolled. In the first visit, we collected descriptive data and the peak power output (PPO). On the next three visits, in random order, participants performed interval training with the same time structure (effort:rest 20s:10s) but using different intensities (115%, 130%, and 170% of PPO). We collected the number of sprints, power output, oxygen consumption, blood lactate, and heart rate. Results The analysis of variance for multivariate test (number of sprints, power output, blood lactate, peak heart rate and percentage of maximal heart rate) showed significant differences between groups (F = 9.62; p = 0.001) and intensities (F = 384.05; p < 0.001), with no interactions (F = 0.94; p = 0.57). All three energetic contributions and intensities were different between protocols. The higher contribution was aerobic, followed by alactic and lactic. The aerobic contribution was higher at 115%PPO, while the alactic system showed higher contribution at 130%PPO. In conclusion, the aerobic system was predominant in the three exercise protocols, and we observed a higher contribution at lower intensities.


2020 ◽  
Vol 17 (8) ◽  
pp. 835-839
Author(s):  
Carley O’Neill ◽  
Shilpa Dogra

Background: Low- and moderate-intensity exercise training has been shown to be effective for reducing general anxiety and anxiety sensitivity among adults with asthma. Exercise frequency and intensity have been shown to play an integral role in reducing anxiety sensitivity; however, less is known about the impact of high-intensity interval training (HIIT) on anxiety in adults with asthma. Methods: A 6-week HIIT intervention was conducted with adults with asthma. Participants completed HIIT (10% peak power output for 1 min, 90% peak power output for 1 min, repeated 10 times) 3 times per week on a cycle ergometer. Preintervention and postintervention assessments included the Anxiety Sensitivity Index-3 and the Body Sensations Questionnaire. Results: Total Anxiety Sensitivity Index-3 (PRE: 17.9 [11.8]; POST 12.4 [13], P = .002, Cohen d = 0.4, n = 20) and Body Sensations Questionnaire (PRE: 2.4 [1.0]; POST: 2.0 [0.8], P = .007, Cohen d = 0.3) improved from preintervention to postintervention. Conclusion: A 6-week HIIT intervention leads to improved anxiety among adults with asthma. Future research should determine the impact of HIIT among adults with asthma with clinical anxiety.


2017 ◽  
Vol 49 (2) ◽  
pp. 265-273 ◽  
Author(s):  
TODD A. ASTORINO ◽  
ROSS M. EDMUNDS ◽  
AMY CLARK ◽  
LEESA KING ◽  
RACHAEL A. GALLANT ◽  
...  

2020 ◽  
Vol 73 (1) ◽  
pp. 125-134
Author(s):  
Giorgio Manferdelli ◽  
Nils Freitag ◽  
Kenji Doma ◽  
Anthony C Hackney ◽  
Hans-Georg Predel ◽  
...  

AbstractThis study aimed to compare selected hormonal responses to a single session of high intensity interval training performed with an increased fraction of inspired oxygen (hyperoxia) and under normoxic conditions. Twelve recreationally trained men (age 24 ± 3 years) performed two sessions of high intensity interval training on a cycle ergometer, in randomized order with hyperoxia (4 L·min-1 with a flowrate of 94% O2) and normoxia. Each session consisted of 5 intervals of 3 minutes at 85% of the maximal power output, interspersed by 2 min at 40% of the maximal power output. Serum cortisol, prolactin and vascular endothelial growth factor (VEGF) were assessed both before and immediately after each high intensity interval training session. Statistically significant differences in cortisol were found between hyperoxic and normoxic conditions (p = 0.011), with a significant increase in hyperoxia (61.4 ± 73.2%, p = 0.013, ES = -1.03), but not in normoxia (-1.3 ± 33.5%, p > 0.05, ES = 0.1). Prolactin increased similarly in both hyperoxia (118.1 ± 145.1%, p = 0.019, ES = -0.99) and normoxia (62.14 ± 75.43%, p = 0.005, ES = -0.5). VEGF was not statistically altered in either of the conditions. Our findings indicate that a single session of high intensity interval training in low-dose hyperoxia significantly increased cortisol concentrations in recreationally trained individuals compared to normoxia, while the difference was smaller in prolactin and diminished in VEGF concentrations.


Nutrients ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 3674
Author(s):  
Tak Hiong Wong ◽  
Alexiaa Sim ◽  
Stephen F. Burns

Dietary nitrate supplementation has shown promising ergogenic effects on endurance exercise. However, at present there is no systematic analysis evaluating the effects of acute or chronic nitrate supplementation on performance measures during high-intensity interval training (HIIT) and sprint interval training (SIT). The main aim of this systematic review and meta-analysis was to evaluate the evidence for supplementation of dietary beetroot—a common source of nitrate—to improve peak and mean power output during HIIT and SIT. A systematic literature search was carried out following PRISMA guidelines and the PICOS framework within the following databases: PubMed, ProQuest, ScienceDirect, and SPORTDiscus. Search terms used were: ((nitrate OR nitrite OR beetroot) AND (HIIT or high intensity or sprint interval or SIT) AND (performance)). A total of 17 studies were included and reviewed independently. Seven studies applied an acute supplementation strategy and ten studies applied chronic supplementation. The standardised mean difference for mean power output showed an overall trivial, non-significant effect in favour of placebo (Hedges’ g = −0.05, 95% CI −0.32 to 0.21, Z = 0.39, p = 0.69). The standardised mean difference for peak power output showed a trivial, non-significant effect in favour of the beetroot juice intervention (Hedges’ g = 0.08, 95% CI -0.14 to 0.30, Z = 0.72, p = 0.47). The present meta-analysis showed trivial statistical heterogeneity in power output, but the variation in the exercise protocols, nitrate dosage, type of beetroot products, supplementation strategy, and duration among studies restricted a firm conclusion of the effect of beetroot supplementation on HIIT performance. Our findings suggest that beetroot supplementation offers no significant improvement to peak or mean power output during HIIT or SIT. Future research could further examine the ergogenic potential by optimising the beetroot supplementation strategy in terms of dosage, timing, and type of beetroot product. The potential combined effect of other ingredients in the beetroot products should not be undermined. Finally, a chronic supplementation protocol with a higher beetroot dosage (>12.9 mmol/day for 6 days) is recommended for future HIIT and SIT study.


Author(s):  
Justin J. Acala ◽  
Devyn Roche-Willis ◽  
Todd A. Astorino

High intensity interval training is frequently implemented using the 4 × 4 protocol where four 4-min bouts are performed at heart rate (HR) between 85 and 95% HR max. This study identified the HR and power output response to the 4 × 4 protocol in 39 active men and women (age and VO2 max = 26.0 ± 6.1 years and 37.0 ± 5.4 mL/kg/min). Initially, participants completed incremental cycling to assess VO2 max, HR max, and peak power output (PPO). They subsequently completed the 4 × 4 protocol, during which HR and power output were monitored. Data showed that 12.9 ± 0.4 min of 16 min were spent between 85 and 95% HR max, with time spent significantly lower in interval 1 (2.7 ± 0.6 min) versus intervals 2–4 (3.4 ± 0.4 min, 3.4 ± 0.3 min, and 3.5 ± 0.3 min, d = 2.4–2.7). Power output was highest in interval 1 (75% PPO) and significantly declined in intervals 2–4 (63 to 54% PPO, d = 0.7–1.0). To enhance time spent between 85 and 95% HR max for persons with higher fitness, we recommend immediate allocation of supramaximal intensities in interval one.


Sign in / Sign up

Export Citation Format

Share Document